Math 218D: Week 1 Discussion

STUDY COPY

August 26, 2021

Problem 1. Fill in the blanks below.

$$A = \begin{bmatrix} 3 & -4 & 2 & 8 & 0 \\ 1 & 8 & 1/9 & 0 & 1 \\ 2 & 4 & -1 & \pi & 2 \end{bmatrix} \quad a_{23} = \underline{\qquad} \quad \operatorname{Col}_2(A) \in \mathbb{R} - \underline{\qquad} \quad A^{\mathsf{T}} = \underline{\qquad}$$

Problem 2. Fill in the blanks below, assuming that S is *symmetric*.

$$S = \begin{bmatrix} 5 & -4 & \dots & \dots \\ -1 & 19 & \dots & -1 \\ 11 & 2 & 8 & 3 \\ 9 & \dots & \dots & -10 \end{bmatrix}$$
 trace(S) = ____

Problem 3. By definition, a matrix S is symmetric if _____

Problem 4. Suppose that A is $n \times n$ and let $S = A + A^{\mathsf{T}}$. Prove that S is symmetric.

Hint. This proof can be quickly accomplished by filling in the blanks below.

Problem 5. Consider the matrix R given by

$$R = \begin{bmatrix} 1 & -3 & 0 & -9 & 5 \\ 0 & 0 & 1 & 14 & 9 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\operatorname{Col}_4(R) = \underline{\qquad} \operatorname{Col}_1(R) + \underline{\qquad} \operatorname{Col}_3(R)$

- (a) Fill in the blanks above to express the fourth column of R as a linear combination of the first and third columns of R.
- (b) Can the fifth column of R be expressed as a linear combination of the first and third columns of R? Explain why or why not.

Problem 6. We write $\mathbb{R}^9 \xrightarrow{A} \mathbb{R}^{22}$ to indicate that A is a ____ × ___ matrix.

Problem 7. Suppose $\mathbb{R}^{13} \xrightarrow{M^{\mathsf{T}}} \mathbb{R}^{37}$. Then M is a _____ × ____ matrix.

Problem 8. Fill in the blanks in the two equations below.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} \underline{\qquad} \\ \underline{\qquad} \end{bmatrix} + \underline{\qquad} \begin{bmatrix} \underline{\qquad} \\ \underline{\qquad} \end{bmatrix} = 11 \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix} - 42 \begin{bmatrix} 7 \\ 6 \\ 4 \end{bmatrix}$$

Problem 9. Fill in the blanks in each equation below.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \frac{1}{A} \\ \frac{1}{A} \end{bmatrix} = \text{the third column of } A \qquad \begin{bmatrix} A \\ A \end{bmatrix} \begin{bmatrix} \frac{1}{A} \\ \frac{1}{A} \end{bmatrix} = \text{the first column minus the third column of } A$$

$$\begin{bmatrix} A \\ A \end{bmatrix} \begin{bmatrix} \frac{1}{A} \\ \frac{1}{A} \end{bmatrix} = \text{twice the first column of } A$$

Problem 10. Suppose that A has four columns. Fill in the blanks in the equation on the right to validate the equation on the left.

$$\operatorname{Col}_{1} + 3 \operatorname{Col}_{2} - 9 \operatorname{Col}_{3} = 6 \operatorname{Col}_{4}$$

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} --- \\ --- \end{bmatrix} = O$$

Problem 11. Consider the weighted digraph G depicted below.

Use a matrix-vector product to calculate the weighted net flow through each node of G.

Math 218D: Week 2 Discussion

STUDY COPY

September 2, 2021

Problem 1. $\langle [1 \ -3 \ 0 \ 2]^{\mathsf{T}}, [2 \ 1 \ 5 \ 0]^{\mathsf{T}} \rangle = \underline{\hspace{1cm}}$

Problem 2. Which of the following vectors is *orthogonal* to $v = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$?

$$\bigcirc \ \, \boldsymbol{w} = \begin{bmatrix} 3 & -5 & 2 & 1 & 0 \end{bmatrix}^\mathsf{T} \quad \bigcirc \ \, \boldsymbol{x} = \begin{bmatrix} 9 & 2 & 3 & -6 & -8 \end{bmatrix}^\mathsf{T} \quad \bigcirc \ \, \boldsymbol{y} = \begin{bmatrix} -1 & -1 & 9 & -10 & 3 \end{bmatrix}^\mathsf{T}$$

Problem 3. The length of v can be calculated with an inner product using the formula ||v|| = 1

Problem 4. The inner product can be interpreted geometrically with the formula $\langle v, w \rangle =$

Problem 5. If we view $v, w \in \mathbb{R}^n$ as $n \times 1$ matrices, then $\langle v, w \rangle$ can be calculated using matrix multiplication with the formula $\langle v, w \rangle =$

Problem 6. The adjoint formula for inner products states that $\langle Av, w \rangle =$

Problem 7. Suppose that A and B are matrices satisfying $A^{T}B = I_n$ and that \boldsymbol{v} and \boldsymbol{w} vectors making the following diagrams accurate.

Calculate $\langle B\mathbf{v} - 3\mathbf{w}, 2A\mathbf{v} - A\mathbf{w} \rangle$.

Problem 8. One of the following calculations is possible and the other is not. Carry out the possible calculation.

$$\begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 1 \\ 3 & -3 \end{bmatrix} = \underline{ \begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 & 3 \\ 1 & 1 & -3 \end{bmatrix} = \underline{ }$$

Problem 9. Fill in the blanks in each of the following two equations.

Problem 10. Suppose that A and B are 2021×2021 . Prove that $S = B^{\mathsf{T}}A + A^{\mathsf{T}}B$ is symmetric.

Problem 11. The last column of a matrix A is $\begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^{\mathsf{T}}$ and the Gramian of A is

$$G = \begin{bmatrix} 9 & -6 & -6 \\ 3 & 14 & 13 & - \\ - & -29 & - \\ 5 & 13 & 0 & - \end{bmatrix} = \underline{\qquad}$$

- (a) Fill in the missing entries of G and fill in the formula used to calculate G.
- (b) The number of rows of A is $\underline{\hspace{1cm}}$ and the number of columns of A is $\underline{\hspace{1cm}}$.
- (c) Which (if any) of the columns of A is orthogonal to the third column of A?

Math 218D: Week 3 Discussion

STUDY COPY

September 9, 2021

Problem 1. Consider the system of equations given by

Use the Gauß-Jordan algorithm to find the general solution to this system.

Math 218D: Week 4 Discussion

STUDY COPY

September 16, 2021

Problem 1. Use the Gauß-Jordan algorithm to calculate EA = R where $A = \begin{bmatrix} 1 & -5 & 0 & 3 \\ 0 & 0 & 5 & -5 \\ -5 & 25 & -11 & -4 \end{bmatrix}$

Problem 2. Consider the EA = R factorization and the vector \boldsymbol{b} given by

$$\begin{bmatrix} -6 & 5 & 2 & -13 \\ 4 & -4 & -2 & 9 \\ -9 & 9 & 4 & -21 \\ 1 & -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} -3 & 21 & 2 & -26 & -5 & 3 \\ 3 & -21 & 1 & 14 & 38 & -2 \\ -3 & 21 & -3 & -6 & -60 & 1 \\ 2 & -14 & -1 & 16 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -7 & 0 & 6 & 9 & 0 \\ 0 & 0 & 1 & -4 & 11 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} -1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

Determine if Ax = b is consistent without doing any row operations.

Problem 3. Calculate PA = LU where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \\ 3 & -1 & 1 \end{bmatrix}$.

Problem 4. Consider the PA = LU factorization and the vector \boldsymbol{b} given by

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{b} = \begin{bmatrix} 15 \\ 11 \\ -15 \\ 13 \end{bmatrix}$$

Solve Ax = b without doing any row reductions.