# Math 218D: Week 1 Discussion 

Study Copy

August 26, 2021

Problem 1. Fill in the blanks below.

$$
A=\left[\begin{array}{rrrrr}
3 & -4 & 2 & 8 & 0 \\
1 & 8 & 1 / 9 & 0 & 1 \\
2 & 4 & -1 & \pi & 2
\end{array}\right] \quad a_{23}=\square \quad \operatorname{Col}_{2}(A) \in \mathbb{R}-\quad A^{\top}=
$$



Problem 2. Fill in the blanks below, assuming that $S$ is symmetric.

$$
S=\left[\begin{array}{rrrr}
5 & -4 & - & - \\
- & 19 & - & -1 \\
11 & 2 & 8 & 3 \\
9 & - & - & -10
\end{array}\right]
$$

Problem 3. By definition, a matrix $S$ is symmetric if $\qquad$ .

Problem 4. Suppose that $A$ is $n \times n$ and let $S=A+A^{\top}$. Prove that $S$ is symmetric.
Hint. This proof can be quickly accomplished by filling in the blanks below.
$\qquad$ $=$

$=$ $\qquad$ $=$ $\qquad$

Problem 5. Consider the matrix $R$ given by

$$
R=\left[\begin{array}{rrrrr}
1 & -3 & 0 & -9 & 5 \\
0 & 0 & 1 & 14 & 9 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{Col}_{4}(R)=\ldots \operatorname{Col}_{1}(R)+\ldots \operatorname{Col}_{3}(R)
$$

(a) Fill in the blanks above to express the fourth column of $R$ as a linear combination of the first and third columns of $R$.
(b) Can the fifth column of $R$ be expressed as a linear combination of the first and third columns of $R$ ? Explain why or why not.

Problem 6. We write $\mathbb{R}^{9} \xrightarrow{A} \mathbb{R}^{22}$ to indicate that $A$ is a $\qquad$ $\times$ $\qquad$ matrix.

Problem 7. Suppose $\mathbb{R}^{13} \xrightarrow{M^{\top}} \mathbb{R}^{37}$. Then $M$ is a $\qquad$ $\times$ $\qquad$ matrix.

Problem 8. Fill in the blanks in the two equations below.

Problem 9. Fill in the blanks in each equation below.


Problem 10. Suppose that $A$ has four columns. Fill in the blanks in the equation on the right to validate the equation on the left.


Problem 11. Consider the weighted digraph $G$ depicted below.


Use a matrix-vector product to calculate the weighted net flow through each node of $G$.

# Math 218D: Week 2 Discussion <br> Study Copy 

September 2, 2021

Problem 1. $\left\langle\left[\begin{array}{llll}1 & -3 & 0 & 2\end{array}\right]^{\top},\left[\begin{array}{llll}2 & 1 & 5 & 0\end{array}\right]^{\top}\right\rangle=-$
Problem 2. Which of the following vectors is orthogonal to $\boldsymbol{v}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{\top}$ ?$\boldsymbol{w}=\left[\begin{array}{lllll}3 & -5 & 2 & 1 & 0\end{array}\right]^{\top}$$\boldsymbol{x}=\left[\begin{array}{lllll}9 & 2 & 3 & -6 & -8\end{array}\right]^{\top}$

○ $\boldsymbol{y}=[-1$
Problem 3. The length of $\boldsymbol{v}$ can be calculated with an inner product using the formula $\|\boldsymbol{v}\|=$

Problem 4. The inner product can be interpreted geometrically with the formula $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=$
Problem 5. If we view $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ as $n \times 1$ matrices, then $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ can be calculated using matrix multiplication with the formula $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=$ $\qquad$
Problem 6. The adjoint formula for inner products states that $\langle A \boldsymbol{v}, \boldsymbol{w}\rangle=$ $\qquad$ .

Problem 7. Suppose that $A$ and $B$ are matrices satisfying $A^{\top} B=I_{n}$ and that $\boldsymbol{v}$ and $\boldsymbol{w}$ vectors making the following diagrams accurate.


Calculate $\langle B \boldsymbol{v}-3 \boldsymbol{w}, 2 A \boldsymbol{v}-A \boldsymbol{w}\rangle$.

Problem 8. One of the following calculations is possible and the other is not. Carry out the possible calculation.

$$
\left[\begin{array}{rr}
5 & -1 \\
1 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-2 & 1 \\
3 & -3
\end{array}\right]=\square\left[\begin{array}{rr}
5 & -1 \\
1 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{rrr}
0 & -2 & 3 \\
1 & 1 & -3
\end{array}\right]=
$$



Problem 9. Fill in the blanks in each of the following two equations.

$$
\left[\begin{array}{lll}
- & - \\
-
\end{array}\right]\left[\begin{array}{rrrr}
0 & -3 & 1 & 0 \\
1 & 9 & 0 & 0 \\
0 & 4 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
9 & 50 & 5 & -4 \\
12 & 193 & -3 & 19
\end{array}\right] \quad\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
5 & 9 \\
2 & -5 \\
0 & 9
\end{array}\right]
$$

Problem 10. Suppose that $A$ and $B$ are $2021 \times 2021$. Prove that $S=B^{\top} A+A^{\top} B$ is symmetric.

Problem 11. The last column of a matrix $A$ is $\left[\begin{array}{lll}0 & 3 & 4\end{array}\right]^{\top}$ and the Gramian of $A$ is

(a) Fill in the missing entries of $G$ and fill in the formula used to calculate $G$.
(b) The number of rows of $A$ is $\qquad$ and the number of columns of $A$ is $\qquad$
(c) Which (if any) of the columns of $A$ is orthogonal to the third column of $A$ ?

# Math 218D: Week 3 Discussion 

Study Copy

September 9, 2021

Problem 1. Consider the system of equations given by

$$
\begin{aligned}
& x_{1}+2 x_{2}-4 x_{3}+9 x_{4}=-2 \\
& 5 x_{1}+11 x_{2}-13 x_{3}+37 x_{4}=7 \\
& -3 x_{1}-6 x_{2}+12 x_{3}-24 x_{4}=0
\end{aligned}
$$

Use the Gauß-Jordan algorithm to find the general solution to this system.

Problem 2. Suppose $A$ is a matrix satisfying $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & -1 & 0 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Fill-in the blanks below.


Problem 3. Use the Gauß-Jordan algorithm to calculate $\operatorname{rref}(A)$ where $A=\left[\begin{array}{rrrrr}3 & -6 & 12 & 0 & -9 \\ -7 & 14 & -28 & -5 & 26 \\ 5 & -12 & 12 & 2 & -13 \\ 2 & -3 & 12 & -3 & -5\end{array}\right]$

# Math 218D: Week 4 Discussion <br> Study Copy 

September 16, 2021

Problem 1. Use the Gauß-Jordan algorithm to calculate $E A=R$ where $A=\left[\begin{array}{rrrr}1 & -5 & 0 & 3 \\ 0 & 0 & 5 & -5 \\ -5 & 25 & -11 & -4\end{array}\right]$.

Problem 2. Consider the $E A=R$ factorization and the vector $\boldsymbol{b}$ given by

$$
\left[\begin{array}{rrrr}
-6 & 5 & 2 & -13 \\
4 & -4 & -2 & 9 \\
-9 & 9 & 4 & -21 \\
1 & -2 & -1 & 3
\end{array}\right]\left[\begin{array}{rrrrrr}
-3 & 21 & 2 & -26 & -5 & 3 \\
3 & -21 & 1 & 14 & 38 & -2 \\
-3 & 21 & -3 & -6 & -60 & 1 \\
2 & -14 & -1 & 16 & 7 & -2
\end{array}\right]=\left[\begin{array}{rrrrrr}
1 & -7 & 0 & 6 & 9 & 0 \\
0 & 0 & 1 & -4 & 11 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{r}
-1 \\
0 \\
2 \\
1
\end{array}\right]
$$

Determine if $A \boldsymbol{x}=\boldsymbol{b}$ is consistent without doing any row operations.

Problem 3. Calculate $P A=L U$ where $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \\ 3 & -1 & 1\end{array}\right]$.

Problem 4. Consider the $P A=L U$ factorization and the vector $\boldsymbol{b}$ given by

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 0 & 0 \\
-1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{r}
15 \\
11 \\
-15 \\
13
\end{array}\right]
$$

[^0]
[^0]:    Solve $A \boldsymbol{x}=\boldsymbol{b}$ without doing any row reductions.

