Math 218D: Week 5 Discussion
 Study Copy

September 23, 2021

Problem 1. To verify if $\boldsymbol{v} \in \operatorname{Null}(A)$ we must check the equation \qquad
Problem 2. Show that $\boldsymbol{v}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$ is in the null space of $A=\left[\begin{array}{lll}2 & 1 & 4 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \\ 0 & 1 & 2\end{array}\right]$.

Problem 3. Suppose A is 5×9 and that $\boldsymbol{v} \in \operatorname{Null}(A)$. Then $\boldsymbol{v} \in \mathbb{R}$.
Problem 4. Suppose that A has four columns related by the equation $\operatorname{Col}_{4}=3 \operatorname{Col}_{1}+\operatorname{Col}_{2}-\operatorname{Col}_{3}$. Find a nonzero vector $\boldsymbol{v} \in \operatorname{Null}(A)$.

Problem 5. A scalar λ is an eigenvalue of A if

Problem 6. The eigenspace of A corresponding to an eigenvalue λ is $\mathcal{E}_{A}(\lambda)=$

Problem 7. An eigenvector $\boldsymbol{v} \in \mathcal{E}_{A}(\lambda)$ satisfies the equation
Problem 8. Show that $\boldsymbol{v}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{rrr}10 & -6 & 6 \\ 6 & -2 & 6 \\ -6 & 6 & -2\end{array}\right]$ and identify the eigenvalue.

Problem 9. Find all vectors in $\mathcal{E}_{A}(-3)$ where $A=\left[\begin{array}{rrr}-23 & 40 & -60 \\ -5 & 7 & -15 \\ 5 & -10 & 12\end{array}\right]$.

Problem 10. To verify if $\boldsymbol{v} \in \operatorname{Col}(A)$ we must check the equation

Problem 11. Determine if $\boldsymbol{v}=\left[\begin{array}{r}6 \\ 12 \\ 2\end{array}\right]$ is in the column space of $A=\left[\begin{array}{rrr}1 & -3 & 4 \\ 2 & -6 & 8 \\ -3 & 9 & -12\end{array}\right]$.

Problem 12. To verify if $\boldsymbol{v} \in \operatorname{Span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ we must check \qquad .

Problem 13. Determine if $\left[\begin{array}{lll}3 & 0 & 1\end{array}\right]^{\top} \in \operatorname{Span}\left\{\left[\begin{array}{lll}1 & -3 & -3\end{array}\right]^{\top},\left[\begin{array}{lll}-1 & 4 & 3\end{array}\right]^{\top}\right\}$.

Math 218D: Week 6 Discussion
 Study Copy

September 30, 2021

Problem 1. By definition, what does it mean to call a list of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ linearly dependent?

Problem 2. By definition, what does it mean to call a list of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ linearly independent?

Problem 3. Determine if $\left\{\left[\begin{array}{lll}1 & -3 & 1\end{array}\right]^{\top},\left[\begin{array}{lll}-4 & 13 & -3\end{array}\right]^{\top},\left[\begin{array}{lll}5 & -17 & 3\end{array}\right]^{\top}\right\}$ is independent.

Problem 4. Suppose that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3} \in \mathbb{R}^{n}$ and let A be an $m \times n$ matrix such that $\left\{A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, A \boldsymbol{v}_{3}\right\}$ is linearly independent. Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent.

Problem 5. The columns of a matrix A are independent if and only if \qquad .

Problem 6. Consider the calculations

$$
\operatorname{rref}\left[\begin{array}{rrr}
9 & 4 & 4 \\
-36 & -16 & -16 \\
20 & 9 & 4 \\
-49 & -22 & -12
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 20 \\
0 & 1 & -44 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{rref}\left[\begin{array}{rrrr}
9 & -36 & 20 & -49 \\
4 & -16 & 9 & -22 \\
4 & -16 & 4 & -12
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -4 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the pivot solutions to $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{O}$. These vectors form a basis of \qquad -
(b) Find the pivot solutions to $A^{\top} \boldsymbol{v}=\boldsymbol{O}$. These vectors form a basis of \qquad —.
(c) Find the pivot columns of A. These vectors form a basis of \qquad .
(d) Find the nonzero rows of $\operatorname{rref}(A)$. These vectors form a basis of \qquad .
(e) The pivot columns of A^{\top} form a basis of \qquad _.
(f) The nonzero rows of $\operatorname{rref}\left(A^{\top}\right)$ form a basis of \qquad -.
(g) Fill in the blanks in the figure below.

Math 218D: Week 7 Discussion
 Study Copy

October 7, 2021

Problem 1. Suppose that A is a matrix satisfying

$$
\operatorname{Col}\left(A^{\top}\right)=\operatorname{Span}\left\{\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]^{\top},\left[\begin{array}{llll}
0 & 3 & 2 & 4
\end{array}\right]^{\top}\right\} \quad \operatorname{Null}\left(A^{\top}\right)=\operatorname{Span}\left\{\left[\begin{array}{lll}
2 & 1 & 1
\end{array}\right]^{\top}\right\}
$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

(b) Determine if $\boldsymbol{v}=\left[\begin{array}{llll}1 & 0 & 2 & -1\end{array}\right]^{\top}$ satisfies $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{O}$.
(c) Determine if $\boldsymbol{b}=\left[\begin{array}{lll}3 & 5 & 2\end{array}\right]^{\top}$ makes the system $A \boldsymbol{x}=\boldsymbol{b}$ consistent.
(d) $\operatorname{Explain}$ why $\operatorname{Null}(A) \neq \operatorname{Span}\left\{\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{\top},\left[\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right]^{\top}\right\}$.

Problem 2. Suppose $E A=R$ where

$$
E=\left[\begin{array}{rrrr}
1 & -3 & -1 & 17 \\
-3 & 10 & 5 & -56 \\
5 & -19 & -12 & 105 \\
-1 & 7 & 7 & -36
\end{array}\right] \quad R=\left[\begin{array}{rrrrr}
1 & -3 & 0 & -7 & 0 \\
0 & 0 & 1 & 9 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions
(b) Find a basis of $\operatorname{Col}\left(A^{\top}\right)$.
(c) Find a basis of $\operatorname{Null}\left(A^{\top}\right)$.
(d) Find a basis of $\operatorname{Null}(A)$.

(e) Find a basis of $\operatorname{Col}(A)$.

Math 218D: Week 8 Discussion
 Study Copy

October 14, 2021

Problem 1. The least squares problem associated to $A \boldsymbol{x}=\boldsymbol{b}$ is

Problem 2. Suppose $\widehat{\boldsymbol{x}}$ is a least squares approximate solution to $A \boldsymbol{x}=\boldsymbol{b}$. Then $A \widehat{\boldsymbol{x}}=$

Problem 3. The least squares error is defined as

Problem 4. Define the concept of an $A=Q R$ factorization.

Problem 5. A matrix M has orthonormal columns if and only if $M^{\top} M=$

Problem 6. Given $A=Q R$, projection onto $\operatorname{Col}(A)$ is given by $P_{\operatorname{Col}(A)}=$

Problem 7. Suppose $A=Q R$ where A has full column rank. Then the least squares problem $A^{\top} A \widehat{\boldsymbol{x}}=A^{\top} \boldsymbol{b}$ reduces to

Problem 8. Suppose that A is $m \times n$ with orthonormal columns and that $\boldsymbol{v} \in \mathbb{R}^{n}$.
(a) Show that $\|A \boldsymbol{v}\|=\|\boldsymbol{v}\|$.
(b) Show that $n \leq m$.

Problem 9. The figure below depicts the result of using the technique of least squares to fit a curve of the form $f(x)=c_{0}+c_{1} \cos (\pi x / 3)+c_{2} \sin (\pi x / 3)$ to four data points.

Find the values of c_{0}, c_{1}, and c_{2} and calculate the error in using $f(x)$ to approximate this data.

