Math 218D: Week 9 Discussion

Study Copy

October 21, 2021

Problem 1. Calculate $\left|\begin{array}{rrrr}1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -7 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52\end{array}\right|$.

Problem 2. Consider the following matrix factorization

Calculate $\operatorname{det}(A)$.
\qquad and $\operatorname{det}(A B)=$ \qquad .
Problem 3. For $n \times n$ matrices A and $B, \operatorname{det}\left(A^{\boldsymbol{\top}}\right)=$
Problem 4. If possible, find 3×3 matrices A and B satisfying $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$. If this is not possible, then explain why.

Problem 5. The (i, j) minor of A is $M_{i j}=$ \qquad and the (i, j) cofactor is $C_{i j}=$ \qquad -.

Problem 6. Suppose that $\operatorname{det}(A)=35$ and that each (i, j) minor of A is the (i, j) entry of $M=\left[\begin{array}{rrrr}-45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ -15 & 16 & 34 & 5 \\ -10 & -2 & -13 & 5\end{array}\right]$.
(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.
(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A \boldsymbol{x}=\boldsymbol{b}$ for $\boldsymbol{b}=\left[\begin{array}{llll}0 & 7 & 0 & 0\end{array}\right]^{\top}$.

Problem 7. Suppose that λ is an eigenvalue of an $n \times n$ matrix A. Then $\operatorname{det}\left(\lambda \cdot I_{n}-A\right)=$

Math 218D: Week 10 Discussion
 Study Copy

October 28, 2021

Problem 1. The reciprocal of $z=7-9 i$ is $1 / z=$ \qquad $+$ \qquad
Problem 2. Consider the vectors $\boldsymbol{v}=\left[\begin{array}{ll}1+i & 5\end{array}\right]^{\top}$ and $\boldsymbol{w}=\left[\begin{array}{lll}1-3 i & 2+i\end{array}\right]^{\top}$ and the matrix $A=\left[\begin{array}{lll}2 \\ 0\end{array} \begin{array}{ll}1+i & -1 \\ 1 & 3-2\end{array}\right]$. (a) Calculate $\|\boldsymbol{v}\|$.
(b) Calculate $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.
(c) Calculate $A^{*} \boldsymbol{v}$.

Problem 3. We call a matrix A Hermitian if \qquad We call A unitary if \qquad -.

Problem 4. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 5. Suppose that U is $n \times n$ unitary and that $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{C}^{n}$. Show that $\langle U \boldsymbol{v}, U \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.

Problem 6. The polynomial

$$
f(t)=t^{4}-2 t^{3}-t^{2}+t-14
$$

has four distinct roots r_{1}, r_{2}, r_{3}, and r_{4}.
(a) $r_{1}+r_{2}+r_{3}+r_{4}=$ \qquad
(b) Calculate $\left(1-r_{1}\right)\left(1-r_{2}\right)\left(1-r_{3}\right)\left(1-r_{4}\right)$.

Problem 7. Let r_{1} and r_{2} be the roots of

$$
f(t)=-9 t^{2}-2 t-1
$$

Calculate $r_{1}^{2}+r_{2}^{2}$.
Hint. Consider $\left(r_{1}+r_{2}\right)^{2}$.

Math 218D: Week 11 Discussion

Name: \qquad
November 4, 2021

Problem 1. Consider the equation
where the entries marked $*$ are unknown. Find the missing entry of A.

Problem 2. Suppose that A has eigenspaces given by

$$
\mathcal{E}_{A}(7)=\operatorname{Span}\left\{\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{A}(1)=\operatorname{Span}\left\{\left[\begin{array}{lll}
-2 & -5 & -5
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{A}(-1)=\operatorname{Span}\left\{\left[\begin{array}{lll}
-3 & -7 & -9
\end{array}\right]^{\top}\right\}
$$

Calculate $A^{2021} \boldsymbol{v}$ for $\boldsymbol{v}=\left[\begin{array}{lll}0 & -1 & 3\end{array}\right]^{\top}$.

Problem 3. Consider the factorization

$$
\left[\begin{array}{rr}
A & \\
-233 & 693 \\
-84 & 250
\end{array}\right]=\left[\begin{array}{rr}
3 & 11 \\
1 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 0 \\
0 & 19
\end{array}\right]\left[\begin{array}{rr}
3 & 11 \\
1 & 4
\end{array}\right]^{-1}
$$

(a) $\operatorname{det}(A)=$
(b) Find the solution $\boldsymbol{u}(t)$ to the initial value problem $d \boldsymbol{u} / d t=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$.
(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to $d \boldsymbol{u} / d t=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\boldsymbol{v}$ satisfies $\lim _{t \rightarrow \infty} \boldsymbol{u}(t)=\boldsymbol{O}$. Find a basis of V.

Math 218D: Week 12 Discussion Study Copy

November 11, 2021

Problem 1. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 2. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$
\mathcal{E}_{S}(-3)=\operatorname{Span}\left\{\left[\begin{array}{llll}
1 & -2 & 0 & 2
\end{array}\right]^{\top},\left[\begin{array}{llll}
-1 & -3 & -2 & 2
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{S}(5)=\operatorname{Span}\left\{\left[\begin{array}{llll}
0 & 2 & -1 & 2
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{S}(9)=?
$$

(a) Find a basis of $\mathcal{E}_{S}(9)$.
(b) Find a spectral factorization of S.

Problem 3. Show that the following quadratic form is indefinite.

$$
q(\boldsymbol{x})=2 x_{1}^{2}+8 x_{1} x_{2}+2 x_{2}^{2}+2 x_{1} x_{3}+34 x_{2} x_{3}+3670 x_{3}^{2}+2 x_{1} x_{4}-2 x_{2} x_{4}-10 x_{3} x_{4}-4 x_{4}^{2}
$$

Hint. We can do this very quickly by plugging in two vectors into $q(\boldsymbol{x})$.

Problem 4. Show that every Gramian is positive semidefinite. Under what condition is a Gramian positive definite?

Problem 5. Consider the spectral factorization

$$
\left[\begin{array}{rrr}
2 & 3 & -11 \\
3 & 10 & -3 \\
-11 & -3 & 2
\end{array}\right]=\left[\begin{array}{rcr}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\
\frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{rcc}
16 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -9
\end{array}\right]\left[\begin{array}{rcc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Let $q\left(x_{1}, x_{2}, x_{3}\right)$ be the quadratic form corresponding to S.
(a) $q\left(x_{1}, x_{2}, x_{3}\right)=$ \qquad $\cdot x_{1}^{2}+\quad \cdot x_{2}^{2}+$ \qquad - $x_{3}^{2}+$ \qquad - $x_{1} x_{2}+$ \qquad - $x_{1} x_{3}+$ \qquad - $x_{2} x_{3}$
(b) What is the definiteness of S ? Select all that apply.
\bigcirc pos definitepos semidefiniteneg definiteneg semidefiniteindefinite
(c) To "complete the square" we introduce variables $\left\{y_{1}, y_{2}, y_{3}\right\}$. Fill-in the blanks below to express $\left\{y_{1}, y_{2}, y_{3}\right\}$ in terms of the variables $\left\{x_{1}, x_{2}, x_{3}\right\}$.

$$
y_{1}=\square \quad y_{2}=\square \quad y_{3}=
$$

\qquad
Fill-in the blanks below to express $q\left(x_{1}, x_{2}, x_{3}\right)$ as a function of $\left\{y_{1}, y_{2}, y_{3}\right\}$.
$q\left(y_{1}, y_{2}, y_{3}\right)=$ \qquad - $y_{1}^{2}+$ \qquad - $y_{2}^{2}+$ \qquad $\cdot y_{3}^{2}+$ \qquad - $y_{1} y_{2}+$ \qquad $\cdot y_{1} y_{3}+$ \qquad - $y_{2} y_{3}$
(d) If possible, find a matrix A such that $S=A^{*} A$. If this is not possible, then explain why.

