Math 218D: Week 9 Discussion

STUDY COPY

October 21, 2021

Problem 1. Calculate $\begin{vmatrix} 1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52 \end{vmatrix}$.

Problem 2. Consider the following matrix factorization

$$\begin{bmatrix} P & A & U & U \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & 6 \\ -1 & -4 & 1 & -1 & -4 \\ -2 & -10 & 0 & 2 & -1 \\ 8 & 3 & 1 & -2 & -3 \\ 3 & -1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1/8 & 2^9/74 & 1 & 0 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 3/8 & ^{17}/74 & -8/19 & ^{-12}/19 & 1 \end{bmatrix} \begin{bmatrix} 8 & 3 & 1 & -2 & -3 \\ 0 & -37/4 & 1/4 & 3/2 & -7/4 \\ 0 & 0 & 38/37 & -68/37 & -273/74 \\ 0 & 0 & 0 & 0 & -1 & 5/2 \\ 0 & 0 & 0 & 0 & 0 & 97/38 \end{bmatrix}$$

Calculate det(A).

Problem 3. For $n \times n$ matrices A and B, $det(A^{\intercal}) =$ _____ and det(AB) =_____.

Problem 4. If possible, find 3×3 matrices A and B satisfying $\det(A + B) \neq \det(A) + \det(B)$. If this is not possible, then explain why.

Problem 5. The (i, j) minor of A is $M_{ij} = _$ and the (i, j) cofactor is $C_{ij} = _$

Problem 6. Suppose that $\det(A) = 35$ and that each (i, j) minor of A is the (i, j) entry of $M = \begin{bmatrix} -45 & -9 & -41 & 5\\ -10 & 5 & 15 & 5\\ 45 & 16 & 34 & -5\\ -10 & -2 & -13 & 5 \end{bmatrix}$. (a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.

(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A\boldsymbol{x} = \boldsymbol{b}$ for $\boldsymbol{b} = \begin{bmatrix} 0 & 7 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$.

Math 218D: Week 10 Discussion

Study Copy

October 28, 2021

Problem 1. The reciprocal of z = 7 - 9i is $1/z = ____+___i$, **Problem 2.** Consider the vectors $\boldsymbol{v} = \begin{bmatrix} 1+i & 5 \end{bmatrix}^{\mathsf{T}}$ and $\boldsymbol{w} = \begin{bmatrix} 1-3i & 2+i \end{bmatrix}^{\mathsf{T}}$ and the matrix $A = \begin{bmatrix} 2 & 1+i & -1 \\ 0 & 1 & 3-2i \end{bmatrix}$. (a) Calculate $\|\boldsymbol{v}\|$.

(c) Calculate $A^* \boldsymbol{v}$

Problem 4. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 5. Suppose that U is $n \times n$ unitary and that $v, w \in \mathbb{C}^n$. Show that $\langle Uv, Uw \rangle = \langle v, w \rangle$.

Problem 6. The polynomial

$$f(t) = t^4 - 2t^3 - t^2 + t - 14$$

has four distinct roots r_1 , r_2 , r_3 , and r_4 .

(a)
$$r_1 + r_2 + r_3 + r_4 = _$$
 and $r_1 r_2 r_3 r_4 = _$

(b) Calculate $(1 - r_1)(1 - r_2)(1 - r_3)(1 - r_4)$.

Problem 7. Let r_1 and r_2 be the roots of

$$f(t) = -9t^2 - 2t - 1$$

Calculate $r_1^2 + r_2^2$. Hint. Consider $(r_1 + r_2)^2$.

Math 218D: Week 11 Discussion

Name: _____

November 4, 2021

Problem 1. Consider the equation

$$\begin{bmatrix} A & X & B & X^{-1} \\ 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} = \begin{bmatrix} X & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} \begin{bmatrix} -1 & * & -7 & -1 \\ 0 & 0 & * & * \\ -1 & 6 & -1 & 6 \\ -1 & 6 & -1 & 6 \\ -1 & -1 & -10 \end{bmatrix} \begin{bmatrix} 11 & 10 & 0 & 3 \\ * & -7 & * & -3 \\ -10 & * & * & -3 \\ 3 & 3 & * & * \end{bmatrix}$$

where the entries marked * are unknown. Find the missing entry of A.

Problem 2. Suppose that A has eigenspaces given by

 $\mathcal{E}_A(7) = \operatorname{Span}\left\{\begin{bmatrix}1 & 3 & 0\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(1) = \operatorname{Span}\left\{\begin{bmatrix}-2 & -5 & -5\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(-1) = \operatorname{Span}\left\{\begin{bmatrix}-3 & -7 & -9\end{bmatrix}^{\mathsf{T}}\right\}$ Calculate $A^{2021}\boldsymbol{v}$ for $\boldsymbol{v} = \begin{bmatrix}0 & -1 & 3\end{bmatrix}^{\mathsf{T}}$.

Problem 3. Consider the factorization

$$\begin{bmatrix} -233 & 693 \\ -84 & 250 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 19 \end{bmatrix} \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix}^{-1}$$

 $(a) \det(A) = _$

(b) Find the solution $\boldsymbol{u}(t)$ to the initial value problem $d\boldsymbol{u}/dt = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$.

(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to $d\boldsymbol{u}/dt = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \boldsymbol{v}$ satisfies $\lim_{t \to \infty} \boldsymbol{u}(t) = \boldsymbol{O}$. Find a basis of V.

Math 218D: Week 12 Discussion

Study Copy

November 11, 2021

Problem 1. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 2. Suppose S is a real-symmetric matrix whose eigenspaces are given by

 $\mathcal{E}_{S}(-3) = \operatorname{Span}\{\begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & -3 & -2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_{S}(5) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_{S}(9) = ?$

(a) Find a basis of $\mathcal{E}_S(9)$.

(b) Find a spectral factorization of S.

Problem 3. Show that the following quadratic form is *indefinite*.

$$q(\mathbf{x}) = 2x_1^2 + 8x_1x_2 + 2x_2^2 + 2x_1x_3 + 34x_2x_3 + 3670x_3^2 + 2x_1x_4 - 2x_2x_4 - 10x_3x_4 - 4x_4^2$$

Hint. We can do this very quickly by plugging in two vectors into q(x).

Problem 4. Show that every Gramian is positive semidefinite. Under what condition is a Gramian positive definite?

Problem 5. Consider the spectral factorization

$$\begin{bmatrix} 2 & 3 & -11 \\ 3 & 10 & -3 \\ -11 & -3 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 16 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -9 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Let $q(x_1, x_2, x_3)$ be the quadratic form corresponding to S.

- $(a) \quad q(x_1, x_2, x_3) = \underbrace{\cdot x_1^2 + \cdot x_2^2 + \cdot x_3^2 + \cdot x_1 x_2 + \cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_2 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad \text{WR}} \cdot x_1 x_3 + \underbrace{\cdot x_1 x_3 + \cdot x_2 x_3 + x_3 x_4 + x_4 x_5 + x_5 x_5 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5$
- (b) What is the definiteness of S? Select all that apply. \bigcirc pos definite \bigcirc pos semidefinite \bigcirc neg definite \bigcirc neg semidefinite \bigcirc indefinite
- (c) To "complete the square" we introduce variables $\{y_1, y_2, y_3\}$. Fill-in the blanks below to express $\{y_1, y_2, y_3\}$ in terms of the variables $\{x_1, x_2, x_3\}$.

$$y_1 =$$
_____ $y_2 =$ _____ $y_3 =$ _____

Fill-in the blanks below to express $q(x_1, x_2, x_3)$ as a function of $\{y_1, y_2, y_3\}$.

- $q(y_1, y_2, y_3) = \underbrace{\qquad \cdot y_1^2}_{-} + \underbrace{\qquad \cdot y_2^2}_{-} + \underbrace{\qquad \cdot y_3^2}_{-} + \underbrace{\qquad \cdot y_1 y_2}_{-} + \underbrace{\qquad \cdot y_1 y_3}_{-} + \underbrace{\qquad \cdot y_2 y_3}_$
- (d) If possible, find a matrix A such that $S = A^*A$. If this is not possible, then explain why.