Duke University

Math 218
Matrices and Vector Spaces

Exam II

Name:
NetID:

I have adhered to the Duke Community Standard in completing this exam.
Signature:

October 22, 2021

- There are 100 points and 5 problems on this 50 -minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

DukeMATH

Problem 1. Consider the matrix $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ -1 & -1 & 1 \\ 1 & 0 & -2\end{array}\right]$.
$(6 \mathrm{pts})(a)$ Determine if $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top} \in \operatorname{Null}(A)$.
(6 pts) (b) Determine if $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\top} \in \operatorname{Col}(A)$.
$(6 \mathrm{pts})(c)$ Is $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ an eigenvector of A ? If so, what is the associated eigenvalue?
(7 pts) Problem 2. Suppose that A is a matrix and \boldsymbol{v} is a vector satisfying $\boldsymbol{v} \in \mathcal{E}_{A}(-3)$. Show that \boldsymbol{v} is an eigenvector of $M=A^{2}-A$ and identify the corresponding eigenvalue.

Problem 3. The first row of a matrix A is the vector $\left[\begin{array}{llll}1 & -1 & 0 & 1\end{array}\right]^{\top}$ and the first column is the vector $\left[\begin{array}{lll}1 & 3 & -1\end{array}\right]^{\top}$. (7 pts) (a) If possible, determine if $\left[\begin{array}{lll}2 & 4 & 3\end{array}\right]^{\top} \in \operatorname{Null}\left(A^{\top}\right)$. If this is not possible, then explain why.
(10 pts) (b) Now, suppose that $\operatorname{Null}(A)=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ where $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent. Fill in every missing label in the picture of the four fundamental subspaces below, including the dimension of each fundamental subspace.

(8 pts) (c) Suppose again that $\operatorname{Null}(A)=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ where $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent. Find A.

Problem 4. A matrix A has projection onto $\operatorname{Col}\left(A^{\top}\right)$ and projection onto $\operatorname{Col}(A)$ given by

$$
P_{\mathrm{Col}(A T)}=\left[\begin{array}{rrrr}
2 / 3 & -1 / 3 & -1 / 3 & 0 \\
-1 / 3 & 1 / 3 & 0 & 1 / 3 \\
-1 / 3 & 0 & 1 / 3 & -1 / 3 \\
0 & 1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
$$

$$
P_{\mathrm{Col}(A)}=\left[\begin{array}{rrr}
5 / 9 & 4 / 9 & -2 / 9 \\
4 / 9 & 5 / 9 & 2 / 9 \\
-2 / 9 & 2 / 9 & *
\end{array}\right]
$$

Note that the $(3,3)$ entry of $P_{\operatorname{Col}(A)}$ is unknown.
(9 pts) (a) Is the system $A^{\top} \boldsymbol{x}=\left[\begin{array}{llll}3 & 3 & 0 & 0\end{array}\right]^{\top}$ consistent?
(9 pts) (b) Find the projection of $\left[\begin{array}{lll}9 & 0 & 0\end{array}\right]^{\top}$ onto $\operatorname{Null}\left(A^{\top}\right)$.
(7 pts) (c) Find the missing (3,3) entry of $P_{\mathrm{Col}(A)}$. Hint. Start by explaining the relationship between the the dimensions of $\operatorname{Col}\left(A^{\top}\right)$ and $\operatorname{Col}(A)$. What property of projection matrices relates to dimension?

Problem 5. The following $Q R$-factorization was calculated using the Gram-Schmidt algorithm.

$$
\left[\begin{array}{llr}
0 & 1 & -1 \\
1 & 0 & 5 \\
1 & 2 & -1 \\
0 & 1 & -1
\end{array}\right]=\left[\begin{array}{rlr}
0 & * & 1 / 2 \\
1 / \sqrt{2} & * & 1 / 2 \\
1 / \sqrt{2} & * & -1 / 2 \\
0 & * & 1 / 2
\end{array}\right]\left[\begin{array}{rrr}
\sqrt{2} & \sqrt{2} & 2 \sqrt{2} \\
0 & 2 & -4 \\
0 & 0 & 2
\end{array}\right]
$$

Note that the second column of Q is missing.
$(9 \mathrm{pts})(a) \operatorname{rank}(A)=$ \qquad , $\operatorname{rank}(Q)=$ \qquad , and $\operatorname{rank}(R)=$ \qquad
(8 pts) (b) Use the Gram-Schmidt algorithm to find the missing column of Q. You must use the Gram-Schmidt algorithm to receive any credit.
$(8 \mathrm{pts})(c)$ The vector $\boldsymbol{b}=\left[\begin{array}{llll}2 & 2 & 0 & 0\end{array}\right]^{\top}$ is orthogonal to the second column of Q. Find the least-squares approximate solution to $A \boldsymbol{x}=\boldsymbol{b}$.

