DUKE UNIVERSITY

Math 218

MATRICES AND VECTOR SPACES

Exam III

Name:

NetID:

Solutions

I have adhered to the Duke Community Standard in completing this exam. Signature:

November 19, 2021

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. Consider the invertible matrix A and its cofactor matrix C given by

		-1					1	$^{-1}$	1	2	3]	
	-1	0	-1	1	0		-3	0	3	-3	0	
A =	-1	1	0	1	0	C =	3	*	*	3	3	
	-2	-1	-2	0	1		2	1	*	*	0	
	0	0	-1	-1	1		0	-3	3	* 3	3	

Note that C is missing several entries.

(10 pts) (a) Find the missing (4,3) entry of C.

Solution. This is the (4,3) cofactor of A, which is $C_{43} = (-1)^{4+3} \cdot |A_{43}| = -1 \cdot |A_{43}|$. The missing entry of C is then

$$* = -1 \cdot \begin{vmatrix} 1 & -1 & 0 & -2 \\ -1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{vmatrix} \xrightarrow{\substack{r_2 + r_1 \to r_2 \\ r_3 + r_1 \to r_3 \\ \hline r_1 \to r_2 \\ \hline r_2 \to r_2 \\ \hline r_1 \to r_2 \\ \hline r_2 \to r_4 \\ \hline r_1 + r_3 \to r_4 \\ \hline r_1 + r_4 \\ \hline r_1 + r_5 \\ \hline r_1 + r_5 \\ \hline r_1 + r_5 \\ \hline r_2 + r_5 \\ \hline r_1 + r_5 \\ \hline r_1$$

(10 pts) (b) Find $\chi_A(0)$ (the constant coefficient of the characteristic polynomial of A). *Hint*. This can be done by calculating a single inner product.

Solution. We know from class that $\chi_A(0) = (-1)^5 \cdot \det(A) = -\det(A)$. We also know that $AC^{\intercal} = A \operatorname{adj}(A) = \det(A) \cdot I_5$, which means that $\det(A)$ can be calculated as the inner product of the *i*th row of A and the *i*th row of C. So, the constant coefficient of the characteristic polynomial of A is

$$\chi_A(0) = -\det(A) = -\langle \begin{bmatrix} 1 & -1 & 1 & 0 & -2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & -1 & 1 & 2 & 3 \end{bmatrix}^{\mathsf{T}} \rangle = 3$$

(10 pts) (c) Find the solution \boldsymbol{x} to the system $A\boldsymbol{x} = \boldsymbol{b}$ where $\boldsymbol{b} = \det(A) \cdot \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$. Solution. Our matrix A is invertible, so we have a single solution given by

$$\boldsymbol{x} = A^{-1}\boldsymbol{b} = \frac{1}{\det(A)}C^{\mathsf{T}}\det(A) \cdot \begin{bmatrix} 1\\0\\0\\0\\1 \end{bmatrix} = C^{\mathsf{T}} \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\1\\2\\3\\3 \end{bmatrix} + \begin{bmatrix} 0\\-3\\3\\3\\3\\3 \end{bmatrix} = \begin{bmatrix} 1\\-4\\4\\5\\6 \end{bmatrix}$$

(20 pts) **Problem 2.** Consider the system of differential equations given by

Find f(t) and g(t).

Solution. This initial value problem is u' = Au with $u(0) = u_0$ where

$$\boldsymbol{u} = \begin{bmatrix} f(t) \\ g(g) \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix} \qquad \qquad \boldsymbol{u}_0 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

The solution is $\boldsymbol{u}(t) = \exp(At)\boldsymbol{u}_0$. To calculate this matrix exponential, we must diagonalize A. We start with the characteristic polynomial

$$\chi_A(t) = t^2 - \operatorname{trace}(A)t + \det(A) = t^2 - t - 2 = (t - 2) \cdot (t + 1)$$

So, we have $\text{E-Vals}(A) = \{2, -1\}$. The eigenspaces are

$$\mathcal{E}_{A}(2) = \operatorname{Null} \begin{bmatrix} -3 & 3\\ -6 & 6 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1\\ 1 \end{bmatrix} \right\} \qquad \qquad \mathcal{E}_{A}(-1) = \operatorname{Null} \begin{bmatrix} -6 & 3\\ -6 & 3 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1\\ 2 \end{bmatrix} \right\}$$

This gives our diagonalization

$$\begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

Now, the solution to our initial value problem is

$$\begin{bmatrix} f(t) \\ g(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} e^{2t} \\ e^{-t} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} e^{2t} \\ e^{-t} \end{bmatrix} \begin{bmatrix} 4 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4e^{2t} \\ -3e^{-t} \end{bmatrix} = \begin{bmatrix} 4e^{2t} - 3e^{-t} \\ 4e^{2t} - 6e^{-t} \end{bmatrix}$$

Problem 3. The matrix H below is Hermitian with exactly two eigenvalues $\text{E-Vals}(H) = \{\lambda_1, \lambda_2\}$ where $\lambda_1 = 2$ and λ_2 is unknown. A basis of $\mathcal{E}_H(2)$ is given below.

Note that H is missing several entries.

- (3 pts) (a) The (3,4) entry of H is $\underline{-2i} = 2i$.
- (3 pts) (b) The algebraic multiplicity of $\lambda_1 = 2$ as an eigenvalue of H is <u>1</u>.
- (3 pts) (c) The algebraic multiplicity of λ_2 as an eigenvalue of H is <u>3</u>.
- (3 pts) (d) The coefficient of t^3 in $\chi_H(t)$ is $-\underline{\operatorname{trace}(H)} = -32$.
- (8 pts) (e) Determine if $\begin{bmatrix} i & 1 & -i & -i \end{bmatrix}^{\mathsf{T}} \in \mathcal{E}_H(\lambda_2)$. Explain your resoning. Solution. The Spectral Theorem says that $\mathcal{E}_H(\lambda_2)$ is orthogonal to $\mathcal{E}_H(2)$. The inner product

$$\langle \begin{bmatrix} i & 1 & -i & -i \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} i & -i & i & -1 \end{bmatrix}^{\mathsf{T}} \rangle = \overline{(i)} \cdot (i) + \overline{(1)} \cdot (-i) + \overline{(-i)} \cdot (i) + \overline{(-i)} \cdot (-1)$$
$$= (1) + (-i) + (-1) + (-i)$$
$$= -2i$$
$$\neq 0$$

then tells us that $\begin{bmatrix} i & 1 & -i & -i \end{bmatrix}^{\mathsf{T}} \notin \mathcal{E}_H(\lambda_2).$

(8 pts) (f) Find λ_2 . Explain your reasoning.

Solution. We know that $\operatorname{trace}(H) = \operatorname{am}_H(\lambda_1) \cdot \lambda_1 + \operatorname{am}_H(\lambda_2) \cdot \lambda_2$, which gives

$$32 = 1 \cdot 2 + 3 \cdot \lambda_2$$

This implies that $\lambda_2 = 10$.

Problem 4. Consider the quadratic form on \mathbb{R}^3 given by

$$q(x_1, x_2, x_3) = (x_1 + 4x_2 + 5x_3)^2 + (3x_1 - 2x_2 + x_3)^2 + (-2x_1 + x_2 - x_3)^2 + (2x_1 + 5x_2 + 7x_3)^2$$

Note that this quadratic form may be written as $q(x) = \langle x, Sx \rangle$ where S is real-symmetric.

(3 pts) (a) Which of the following adjectives correctly describes q(x)?

 $\sqrt{\text{positive semidefinite}}$ \bigcirc negative semidefinite \bigcirc indefinite

- (3 pts) (b) Which of the following correctly describes the eigenvalues of S?
 - \bigcirc Some eigenvalues of S are positive and some eigenvalues of S are negative.
 - $\bigcirc\,$ The eigenvalues of S are all nonpositive.
 - $\sqrt{}$ The eigenvalues of S are all nonnegative.
- (10 pts) (c) If possible, find A such that $S = A^{\intercal}A$. If this is not possible, then explain why.

Solution. Recall that $S = A^{\intercal}A$ implies $q(\boldsymbol{x}) = \langle \boldsymbol{x}, S\boldsymbol{x} \rangle = \langle \boldsymbol{x}, A^{\intercal}A\boldsymbol{x} \rangle = \langle A\boldsymbol{x}, A\boldsymbol{x} \rangle = ||A\boldsymbol{x}||^2$. Our quadratic form is given to us as a sum of squares, so we have $S = A^{\intercal}A$ where

$$A = \begin{bmatrix} 1 & 4 & 5\\ 3 & -2 & 1\\ -2 & 1 & -1\\ 2 & 5 & 7 \end{bmatrix}$$

(6 pts) (d) If possible, find $x \neq 0$ satisfying q(x) = 0. If this is not possible, then explain why.

Solution. From (c), we know that $q(\mathbf{x}) = ||A\mathbf{x}||^2$. This means that any $\mathbf{x} \neq \mathbf{O}$ in Null(A) will do. Noting that the third column of A is the sum of the first two then tells us that q(1, 1, -1) = 0.