## Duke University

Math 218<br>Matrices and Vector Spaces

## Exam III

Name:
NetID:

Solutions

I have adhered to the Duke Community Standard in completing this exam.
Signature:

November 19, 2021

- There are 100 points and 4 problems on this 50 -minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Duke MATH

Problem 1. Consider the invertible matrix $A$ and its cofactor matrix $C$ given by

$$
A=\left[\begin{array}{rrrrr}
1 & -1 & 1 & 0 & -2 \\
-1 & 0 & -1 & 1 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
-2 & -1 & -2 & 0 & 1 \\
0 & 0 & -1 & -1 & 1
\end{array}\right] \quad C=\left[\begin{array}{rrrrr}
1 & -1 & 1 & 2 & 3 \\
-3 & 0 & 3 & -3 & 0 \\
3 & * & * & 3 & 3 \\
2 & 1 & * & * & 0 \\
0 & -3 & 3 & 3 & 3
\end{array}\right]
$$

Note that $C$ is missing several entries.
(10 pts) (a) Find the missing $(4,3)$ entry of $C$.
Solution. This is the $(4,3)$ cofactor of $A$, which is $C_{43}=(-1)^{4+3} \cdot\left|A_{43}\right|=-1 \cdot\left|A_{43}\right|$. The missing entry of $C$ is then

$$
*=-1 \cdot\left|\begin{array}{rrrr}
1 & -1 & 0 & -2 \\
-1 & 0 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right| \xlongequal{\substack{\boldsymbol{r}_{2}+\boldsymbol{r}_{1} \rightarrow \boldsymbol{r}_{2} \\
\boldsymbol{r}_{3}+\boldsymbol{r}_{1} \rightarrow \boldsymbol{r}_{3}}}-1 \cdot\left|\begin{array}{rrrr}
1 & -1 & 0 & -2 \\
0 & -1 & 1 & -2 \\
0 & 0 & 1 & -2 \\
0 & 0 & -1 & 1
\end{array}\right| \xlongequal{\boldsymbol{r}_{4}+\boldsymbol{r}_{3} \rightarrow \boldsymbol{r}_{4}}-1 \cdot\left|\begin{array}{rrrr}
1 & -1 & 0 & -2 \\
0 & -1 & 1 & -2 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right|=-1
$$

(10 pts) (b) Find $\chi_{A}(0)$ (the constant coefficient of the characteristic polynomial of $A$ ). Hint. This can be done by calculating a single inner product.
Solution. We know from class that $\chi_{A}(0)=(-1)^{5} \cdot \operatorname{det}(A)=-\operatorname{det}(A)$. We also know that $A C^{\top}=A \operatorname{adj}(A)=$ $\operatorname{det}(A) \cdot I_{5}$, which means that $\operatorname{det}(A)$ can be calculated as the inner product of the $i$ th row of $A$ and the $i$ th row of $C$. So, the constant coefficient of the characteristic polynomial of $A$ is

$$
\chi_{A}(0)=-\operatorname{det}(A)=-\left\langle\left[\begin{array}{lllll}
1 & -1 & 1 & 0 & -2
\end{array}\right]^{\top},\left[\begin{array}{lllll}
1 & -1 & 1 & 2 & 3
\end{array}\right]^{\top}\right\rangle=3
$$

(10 pts) (c) Find the solution $\boldsymbol{x}$ to the system $A \boldsymbol{x}=\boldsymbol{b}$ where $\boldsymbol{b}=\operatorname{det}(A) \cdot\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}\right]^{\top}$.
Solution. Our matrix $A$ is invertible, so we have a single solution given by

$$
\boldsymbol{x}=A^{-1} \boldsymbol{b}=\frac{1}{\operatorname{det}(A)} C^{\boldsymbol{\top}} \operatorname{det}(A) \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=C^{\boldsymbol{\top}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{r}
0 \\
-3 \\
3 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{r}
1 \\
-4 \\
4 \\
5 \\
6
\end{array}\right]
$$

(20 pts) Problem 2. Consider the system of differential equations given by

$$
\begin{array}{rlrl}
f^{\prime} & =5 f-3 g & f(0) & =1 \\
g^{\prime} & =6 f-4 g & g(0) & =-2
\end{array}
$$

Find $f(t)$ and $g(t)$.
Solution. This initial value problem is $\boldsymbol{u}^{\prime}=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ where

$$
\boldsymbol{u}=\left[\begin{array}{c}
f(t) \\
g(g)
\end{array}\right] \quad A=\left[\begin{array}{ll}
5 & -3 \\
6 & -4
\end{array}\right] \quad \boldsymbol{u}_{0}=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

The solution is $\boldsymbol{u}(t)=\exp (A t) \boldsymbol{u}_{0}$. To calculate this matrix exponential, we must diagonalize $A$. We start with the characteristic polynomial

$$
\chi_{A}(t)=t^{2}-\operatorname{trace}(A) t+\operatorname{det}(A)=t^{2}-t-2=(t-2) \cdot(t+1)
$$

So, we have $\operatorname{E-Vals}(A)=\{2,-1\}$. The eigenspaces are

$$
\mathcal{E}_{A}(2)=\operatorname{Null}\left[\begin{array}{cc}
2 \cdot I_{2}-A \\
-3 & 3 \\
-6 & 6
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \quad \mathcal{E}_{A}(-1)=\operatorname{Null}\left[\begin{array}{ll}
-1 \cdot I_{2}-A \\
-6 & 3 \\
-6 & 3
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
$$

This gives our diagonalization

$$
\left[\begin{array}{ll}
5 & -3 \\
6 & -4
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
X^{-1} \\
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Now, the solution to our initial value problem is

$$
\left[\begin{array}{l}
f(t) \\
g(t)
\end{array}\right]=\left[\begin{array}{ll}
x & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & \\
& e^{-t}(D t)
\end{array}\right]\left[\begin{array}{rr}
2^{-1} & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{r}
u_{0} \\
-2 \\
-2
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
e^{2 t} & \\
& e^{-t}
\end{array}\right]\left[\begin{array}{r}
4 \\
-3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{r}
4 e^{2 t} \\
-3 e^{-t}
\end{array}\right]=\left[\begin{array}{l}
4 e^{2 t}-3 e^{-t} \\
4 e^{2 t}-6 e^{-t}
\end{array}\right]
$$

Problem 3. The matrix $H$ below is Hermitian with exactly two eigenvalues E-Vals $(H)=\left\{\lambda_{1}, \lambda_{2}\right\}$ where $\lambda_{1}=2$ and $\lambda_{2}$ is unknown. A basis of $\mathcal{E}_{H}(2)$ is given below.

$$
H=\left[\begin{array}{rrrr}
8 & * & -2 & * \\
* & 8 & * & * \\
-2 & * & 8 & * \\
* & * & -2 i & 8
\end{array}\right] \quad \mathcal{E}_{H}(2)=\operatorname{Span}\left\{\left[\begin{array}{llll}
i & -i & i & -1
\end{array}\right]^{\top}\right\}
$$

Note that $H$ is missing several entries.
(3 pts) (a) The $(3,4)$ entry of $H$ is $\quad \overline{-2 i}=2 i$
(3 pts) (b) The algebraic multiplicity of $\lambda_{1}=2$ as an eigenvalue of $H$ is $\qquad$ -.
(3 pts) (c) The algebraic multiplicity of $\lambda_{2}$ as an eigenvalue of $H$ is $\qquad$ .
(3 pts) (d) The coefficient of $t^{3}$ in $\chi_{H}(t)$ is $-\operatorname{trace}(H)=-32$.
(8 pts) (e) Determine if $\left[\begin{array}{llll}i & 1 & -i & -i\end{array}\right]^{\top} \in \mathcal{E}_{H}\left(\lambda_{2}\right)$. Explain your resoning.
Solution. The Spectral Theorem says that $\mathcal{E}_{H}\left(\lambda_{2}\right)$ is orthogonal to $\mathcal{E}_{H}(2)$. The inner product

$$
\begin{aligned}
\left\langle\left[\begin{array}{llll}
i & 1 & -i & -i
\end{array}\right]^{\top},\left[\begin{array}{llll}
i & -i & i & -1
\end{array}\right]^{\top}\right\rangle & =\overline{(i)} \cdot(i)+\overline{(1)} \cdot(-i)+\overline{(-i)} \cdot(i)+\overline{(-i)} \cdot(-1) \\
& =(1)+(-i)+(-1)+(-i) \\
& =-2 i \\
& \neq 0
\end{aligned}
$$

then tells us that $\left[\begin{array}{llll}i & 1 & -i & -i\end{array}\right]^{\top} \notin \mathcal{E}_{H}\left(\lambda_{2}\right)$.
( 8 pts ) $(f)$ Find $\lambda_{2}$. Explain your reasoning.
Solution. We know that trace $(H)=\operatorname{am}_{H}\left(\lambda_{1}\right) \cdot \lambda_{1}+\operatorname{am}_{H}\left(\lambda_{2}\right) \cdot \lambda_{2}$, which gives

$$
32=1 \cdot 2+3 \cdot \lambda_{2}
$$

This implies that $\lambda_{2}=10$.

Problem 4. Consider the quadratic form on $\mathbb{R}^{3}$ given by

$$
q\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+4 x_{2}+5 x_{3}\right)^{2}+\left(3 x_{1}-2 x_{2}+x_{3}\right)^{2}+\left(-2 x_{1}+x_{2}-x_{3}\right)^{2}+\left(2 x_{1}+5 x_{2}+7 x_{3}\right)^{2}
$$

Note that this quadratic form may be written as $q(\boldsymbol{x})=\langle\boldsymbol{x}, S \boldsymbol{x}\rangle$ where $S$ is real-symmetric.
(3 pts) (a) Which of the following adjectives correctly describes $q(\boldsymbol{x})$ ?
$\sqrt{ }$ positive semidefinitenegative semidefiniteindefinite
(3 pts) (b) Which of the following correctly describes the eigenvalues of $S$ ?
Some eigenvalues of $S$ are positive and some eigenvalues of $S$ are negative.
The eigenvalues of $S$ are all nonpositive.
$\sqrt{ }$ The eigenvalues of $S$ are all nonnegative.
(10 pts) (c) If possible, find $A$ such that $S=A^{\top} A$. If this is not possible, then explain why.
Solution. Recall that $S=A^{\top} A$ implies $q(\boldsymbol{x})=\langle\boldsymbol{x}, S \boldsymbol{x}\rangle=\left\langle\boldsymbol{x}, A^{\top} A \boldsymbol{x}\right\rangle=\langle A \boldsymbol{x}, A \boldsymbol{x}\rangle=\|A \boldsymbol{x}\|^{2}$. Our quadratic form is given to us as a sum of squares, so we have $S=A^{\top} A$ where

$$
A=\left[\begin{array}{rrr}
1 & 4 & 5 \\
3 & -2 & 1 \\
-2 & 1 & -1 \\
2 & 5 & 7
\end{array}\right]
$$

(6 pts) (d) If possible, find $\boldsymbol{x} \neq \boldsymbol{O}$ satisfying $q(\boldsymbol{x})=0$. If this is not possible, then explain why.
Solution. From $(c)$, we know that $q(\boldsymbol{x})=\|A \boldsymbol{x}\|^{2}$. This means that any $\boldsymbol{x} \neq \boldsymbol{O}$ in $\operatorname{Null}(A)$ will do. Noting that the third column of $A$ is the sum of the first two then tells us that $q(1,1,-1)=0$.

