DUKE UNIVERSITY

Math 218

MATRICES AND VECTOR SPACES

Exam III

Name:

NetID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

November 19, 2021

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. Consider the invertible matrix A and its cofactor matrix C given by

[1	-1	1	0	-2	Γ	1	-1	1	2	3
	-1	0	-1	1	0	-	-3	0	3	-3	0
$A = \left \right $	-1	1	0	1	0	C =	3	*	*	3	3
	-2	-1	-2	0	1		2	1	*	*	0
	0	0	-1	-1	1		0	-3	3	3	3

Note that C is missing several entries.

(10 pts) (a) Find the missing (4,3) entry of C.

(10 pts) (b) Find $\chi_A(0)$ (the constant coefficient of the characteristic polynomial of A). *Hint.* This can be done by calculating a single inner product.

(10 pts) (c) Find the solution \boldsymbol{x} to the system $A\boldsymbol{x} = \boldsymbol{b}$ where $\boldsymbol{b} = \det(A) \cdot \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$.

(20 pts) **Problem 2.** Consider the system of differential equations given by

Find f(t) and g(t).

Problem 3. The matrix H below is Hermitian with exactly two eigenvalues $\text{E-Vals}(H) = \{\lambda_1, \lambda_2\}$ where $\lambda_1 = 2$ and λ_2 is unknown. A basis of $\mathcal{E}_H(2)$ is given below.

Note that H is missing several entries.

- (3 pts) (a) The (3, 4) entry of H is _____.
- (3 pts) (b) The algebraic multiplicity of $\lambda_1 = 2$ as an eigenvalue of H is _____.
- (3 pts) (c) The algebraic multiplicity of λ_2 as an eigenvalue of H is _____.
- (3 pts) (d) The coefficient of t^3 in $\chi_H(t)$ is _____.
- (8 pts) (e) Determine if $\begin{bmatrix} i & 1 & -i & -i \end{bmatrix}^{\mathsf{T}} \in \mathcal{E}_H(\lambda_2)$. Explain your resoning.

(8 pts) (f) Find λ_2 . Explain your reasoning.

Problem 4. Consider the quadratic form on \mathbb{R}^3 given by

$$q(x_1, x_2, x_3) = (x_1 + 4x_2 + 5x_3)^2 + (3x_1 - 2x_2 + x_3)^2 + (-2x_1 + x_2 - x_3)^2 + (2x_1 + 5x_2 + 7x_3)^2$$

Note that this quadratic form may be written as $q(x) = \langle x, Sx \rangle$ where S is real-symmetric.

- (3 pts) (a) Which of the following adjectives correctly describes q(x)?
 - \bigcirc positive semidefinite \bigcirc negative semidefinite \bigcirc indefinite
- (3 pts) (b) Which of the following correctly describes the eigenvalues of S?
 - \bigcirc Some eigenvalues of S are positive and some eigenvalues of S are negative.
 - $\bigcirc\,$ The eigenvalues of S are all nonpositive.
 - $\bigcirc\,$ The eigenvalues of S are all nonnegative.
- (10 pts) (c) If possible, find A such that $S = A^{\intercal}A$. If this is not possible, then explain why.

(6 pts) (d) If possible, find $x \neq 0$ satisfying q(x) = 0. If this is not possible, then explain why.