Math 218D: Week 1 Discussion

Study Copy

August 26, 2021

Problem 1. Fill in the blanks below.

Problem 2. Fill in the blanks below, assuming that S is *symmetric*.

$$S = \begin{bmatrix} 5 & -4 & \dots & \\ -1 & 19 & \dots & -1 \\ 11 & 2 & 8 & 3 \\ 9 & \dots & -10 \end{bmatrix}$$
 trace(S) = _____

Problem 3. By definition, a matrix S is symmetric if .

Problem 4. Suppose that A is $n \times n$ and let $S = A + A^{\intercal}$. Prove that S is symmetric. *Hint.* This proof can be quickly accomplished by filling in the blanks below.

Problem 5. Consider the matrix R given by

$$R = \begin{bmatrix} 1 & -3 & 0 & -9 & 5 \\ 0 & 0 & 1 & 14 & 9 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Col_4(R) = \underline{\qquad} Col_1(R) + \underline{\qquad} Col_3(R)$$

- (a) Fill in the blanks above to express the fourth column of R as a linear combination of the first and third columns of R.
- (b) Can the fifth column of R be expressed as a linear combination of the first and third columns of R? Explain why or why not.

Problem 6. We write $\mathbb{R}^9 \xrightarrow{A} \mathbb{R}^{22}$ to indicate that A is a _____ × ____ matrix.

Problem 7. Suppose $\mathbb{R}^{13} \xrightarrow{M^{\dagger}} \mathbb{R}^{37}$. Then *M* is a _____ × ____ matrix.

Problem 8. Fill in the blanks in the two equations below.

Problem 9. Fill in the blanks in each equation below.

Problem 10. Suppose that A has four columns. Fill in the blanks in the equation on the right to validate the equation on the left.

$$\operatorname{Col}_1 + 3 \operatorname{Col}_2 - 9 \operatorname{Col}_3 = 6 \operatorname{Col}_4 \qquad \left[\begin{array}{c} A \end{array} \right] = \mathbf{O}$$

Problem 11. Consider the weighted digraph G depicted below.

Use a matrix-vector product to calculate the weighted net flow through each node of G.

Math 218D: Week 2 Discussion

Study Copy

September 2, 2021

Problem 1. $\langle \begin{bmatrix} 1 & -3 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 2 & 1 & 5 & 0 \end{bmatrix}^{\mathsf{T}} \rangle =$ _____

Problem 2. Which of the following vectors is *orthogonal* to $\boldsymbol{v} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$? $\bigcirc \boldsymbol{w} = \begin{bmatrix} 3 & -5 & 2 & 1 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \boldsymbol{x} = \begin{bmatrix} 9 & 2 & 3 & -6 & -8 \end{bmatrix}^{\mathsf{T}} \bigcirc \boldsymbol{y} = \begin{bmatrix} -1 & -1 & 9 & -10 & 3 \end{bmatrix}^{\mathsf{T}}$

Problem 3. The length of v can be calculated with an inner product using the formula $\|v\| =$

Problem 4. The inner product can be interpreted geometrically with the formula $\langle v, w \rangle =$

Problem 5. If we view $v, w \in \mathbb{R}^n$ as $n \times 1$ matrices, then $\langle v, w \rangle$ can be calculated using matrix multiplication with the formula $\langle v, w \rangle =$

Problem 6. The adjoint formula for inner products states that $\langle Av, w \rangle =$

Problem 7. Suppose that A and B are matrices satisfying $A^{\intercal}B = I_n$ and that \boldsymbol{v} and \boldsymbol{w} vectors making the following diagrams accurate.

Calculate $\langle B\boldsymbol{v} - 3\boldsymbol{w}, 2A\boldsymbol{v} - A\boldsymbol{w} \rangle$.

Problem 8. One of the following calculations is possible and the other is not. Carry out the possible calculation.

$$\begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 1 \\ 3 & -3 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 & 3 \\ 1 & 1 & -3 \end{bmatrix} = \underline{\qquad}$$

Problem 9. Fill in the blanks in each of the following two equations.

Problem 10. Suppose that A and B are 2021×2021 . Prove that $S = B^{\intercal}A + A^{\intercal}B$ is symmetric.

Problem 11. The last column of a matrix A is $\begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^{\mathsf{T}}$ and the Gramian of A is

- (a) Fill in the missing entries of G and fill in the formula used to calculate G.
- (b) The number of rows of A is _____ and the number of columns of A is _____.
- (c) Which (if any) of the columns of A is orthogonal to the third column of A?

Math 218D: Week 3 Discussion

Study Copy

September 9, 2021

Problem 1. Consider the system of equations given by

Use the Gauß-Jordan algorithm to find the general solution to this system.

Problem 2. Suppose *A* is a matrix satisfying $\operatorname{rref}(A) = \begin{bmatrix} 1 & -13 & 0 & 6 \\ 0 & 0 & 1 & 17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Fill-in the blanks below.

			12			
Droblem 2 Use the Cault London element to colculate $met(A)$ where A	-7	14	-28	-5	26	
Problem 3. Use the Gauß-Jordan algorithm to calculate $\operatorname{rref}(A)$ where $A =$	5	-12	12	2	-13	•
	2	-3	12	-3	-5	

~

Math 218D: Week 4 Discussion

Study Copy

September 16, 2021

3

 $\mathbf{5}$

4

Problem 1. Use the Gauß-Jordan algorithm to calculate EA = R where $A = \begin{bmatrix} 1 & -5 & 0 \\ 0 & 0 & 5 \\ -5 & 25 & -11 \end{bmatrix}$

Problem 2. Consider the EA = R factorization and the vector **b** given by

	E					Α						R					
$\left[-6\right]$	5 - 2	-13	$\boxed{-3}$	21	2	-26	-5	3	[1	-7	0	6	9	0		[-1]	
4	-4 -2	9	3	-21	1	14	38	-2	0	0	1	-4	11	0	ь	0	
-9	9 4	-21	-3	21	-3	-6	-60	1	= 0	0	0	0	0	1	0 =	2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	-14	-1	16	7	-2	0	0	0	0	0	0		1	

Determine if Ax = b is consistent without doing any row operations.

Problem 3. Calculate PA = LU where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \\ 3 & -1 & 1 \end{bmatrix}$.

Problem 4. Consider the PA = LU factorization and the vector **b** given by

Р		A)			L				U			
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	1	-1	-1]		[1	0	0	0]	[1	-1	-1]	Γ	15
$0 \ 1 \ 0 \ 0$	1	0	0		1	1	0	0	0	1	1		11
$0 \ 0 \ 0 \ 1$	-1	1	1	=	3	4	1	0	0	0	2	b =	$ 15 \\ 11 \\ -15 $
$\begin{bmatrix} P \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	3	1	3		-1	0	0	1	0	0	0		13

Solve $A\mathbf{x} = \mathbf{b}$ without doing any row reductions.

Math 218D: Week 5 Discussion

Study Copy

September 23, 2021

Problem 1. To verify if $v \in Null(A)$ we must check the equation

Problem 2. Show that
$$\boldsymbol{v} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
 is in the null space of $A = \begin{bmatrix} 2 & 1 & 4\\ 1 & 1 & 3\\ 2 & 1 & 4\\ 0 & 1 & 2 \end{bmatrix}$.

Problem 3. Suppose A is 5×9 and that $v \in \text{Null}(A)$. Then $v \in \mathbb{R}$ —

Problem 4. Suppose that A has four columns related by the equation $\operatorname{Col}_4 = 3 \operatorname{Col}_1 + \operatorname{Col}_2 - \operatorname{Col}_3$. Find a nonzero vector $\boldsymbol{v} \in \operatorname{Null}(A)$.

Problem 5. A scalar λ is an *eigenvalue* of A if

Problem 6. The *eigenspace* of A corresponding to an eigenvalue λ is $\mathcal{E}_A(\lambda) =$

Problem 7. An eigenvector $\boldsymbol{v} \in \mathcal{E}_A(\lambda)$ satisfies the equation

Problem 8. Show that $\boldsymbol{v} = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 10 & -6 & 6\\ 6 & -2 & 6\\ -6 & 6 & -2 \end{bmatrix}$ and identify the eigenvalue.

Problem 9. Find all vectors in $\mathcal{E}_A(-3)$ where $A = \begin{bmatrix} -23 & 40 & -60 \\ -5 & 7 & -15 \\ 5 & -10 & 12 \end{bmatrix}$.

Problem 10. To verify if $v \in Col(A)$ we must check the equation _

Problem 11. Determine if $\boldsymbol{v} = \begin{bmatrix} 6\\12\\2 \end{bmatrix}$ is in the column space of $A = \begin{bmatrix} 1 & -3 & 4\\2 & -6 & 8\\-3 & 9 & -12 \end{bmatrix}$.

Problem 12. To verify if $v \in \text{Span}\{v_1, \dots, v_k\}$ we must check ______ Problem 13. Determine if $\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \in \text{Span}\{\begin{bmatrix} 1 & -3 & -3 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & 4 & 3 \end{bmatrix}^{\mathsf{T}}\}.$

Math 218D: Week 6 Discussion

STUDY COPY

September 30, 2021

Problem 1. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \ldots, v_n\}$ linearly dependent?

Problem 2. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \ldots, v_n\}$ linearly independent?

Problem 3. Determine if $\{\begin{bmatrix} 1 & -3 & 1\end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -4 & 13 & -3\end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 5 & -17 & 3\end{bmatrix}^{\mathsf{T}}\}$ is independent.

Problem 4. Suppose that $v_1, v_2, v_3 \in \mathbb{R}^n$ and let A be an $m \times n$ matrix such that $\{Av_1, Av_2, Av_3\}$ is linearly independent. Show that $\{v_1, v_2, v_3\}$ is linearly independent.

Problem 5. The columns of a matrix A are independent if and only if ______

Problem 6. Consider the calculations

$$\operatorname{rref} \begin{bmatrix} 9 & 4 & 4\\ -36 & -16 & -16\\ 20 & 9 & 4\\ -49 & -22 & -12 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 20\\ 0 & 1 & -44\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \qquad \operatorname{rref} \begin{bmatrix} 9 & -36 & 20 & -49\\ 4 & -16 & 9 & -22\\ 4 & -16 & 4 & -12 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 0 & -1\\ 0 & 0 & 1 & -2\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

_____.

(a) Find the pivot solutions to Av = O. These vectors form a basis of _

(b) Find the pivot solutions to $A^{\intercal}v = 0$. These vectors form a basis of _

(c) Find the pivot columns of A. These vectors form a basis of _____

(d) Find the nonzero rows of rref(A). These vectors form a basis of _____

- (e) The pivot columns of A^{\intercal} form a basis of _____
- (f) The nonzero rows of $\operatorname{rref}(A^{\intercal})$ form a basis of _____.
- (g) Fill in the blanks in the figure below.

Math 218D: Week 7 Discussion

Study Copy

October 7, 2021

Problem 1. Suppose that A is a matrix satisfying

 $\operatorname{Col}(A^{\mathsf{T}}) = \operatorname{Span}\{\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 & 3 & 2 & 4 \end{bmatrix}^{\mathsf{T}}\} \qquad \operatorname{Null}(A^{\mathsf{T}}) = \operatorname{Span}\{\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^{\mathsf{T}}\}$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

- (b) Determine if $\boldsymbol{v} = \begin{bmatrix} 1 & 0 & 2 & -1 \end{bmatrix}^{\mathsf{T}}$ satisfies $A\boldsymbol{v} = \boldsymbol{O}$.
- (c) Determine if $\boldsymbol{b} = \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\mathsf{T}}$ makes the system $A\boldsymbol{x} = \boldsymbol{b}$ consistent.

(d) Explain why Null(A) \neq Span{ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ }.

Problem 2. Suppose EA = R where

$$E = \begin{bmatrix} 1 & -3 & -1 & 17 \\ -3 & 10 & 5 & -56 \\ 5 & -19 & -12 & 105 \\ -1 & 7 & 7 & -36 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & -3 & 0 & -7 & 0 \\ 0 & 0 & 1 & 9 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

(b) Find a basis of $\operatorname{Col}(A^{\intercal})$.

(c) Find a basis of $\text{Null}(A^{\intercal})$.

(d) Find a basis of Null(A).

(e) Find a basis of $\operatorname{Col}(A)$.

Math 218D: Week 8 Discussion

Study Copy

October 14, 2021

Problem 1. The *least squares problem* associated to Ax = b is

Problem 2. Suppose \hat{x} is a least squares approximate solution to Ax = b. Then $A\hat{x} =$

Problem 3. The *least squares error* is defined as

Problem 4. Define the concept of an A = QR factorization.

Problem 5. A matrix M has orthonormal columns if and only if $M^{\intercal}M =$

Problem 6. Given A = QR, projection onto Col(A) is given by $P_{Col(A)} =$

Problem 7. Suppose A = QR where A has full column rank. Then the least squares problem $A^{\intercal}A\hat{x} = A^{\intercal}b$ reduces to

Problem 8. Suppose that A is $m \times n$ with orthonormal columns and that $v \in \mathbb{R}^n$. (a) Show that ||Av|| = ||v||.

(b) Show that $n \leq m$.

Problem 9. The figure below depicts the result of using the technique of least squares to fit a curve of the form $f(x) = c_0 + c_1 \cos(\pi x/3) + c_2 \sin(\pi x/3)$ to four data points.

Find the values of c_0 , c_1 , and c_2 and calculate the error in using f(x) to approximate this data.

Math 218D: Week 9 Discussion

STUDY COPY

October 21, 2021

Problem 1. Calculate $\begin{vmatrix} 1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52 \end{vmatrix}$.

Problem 2. Consider the following matrix factorization

$$\begin{bmatrix} P & A & U & U \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & 6 \\ -1 & -4 & 1 & -1 & -4 \\ -2 & -10 & 0 & 2 & -1 \\ 8 & 3 & 1 & -2 & -3 \\ 3 & -1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1/4 & 1 & 0 & 0 & 0 \\ -1/8 & 2^9/74 & 1 & 0 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 3/8 & ^{17}/74 & -8/_{19} & -12/_{19} & 1 \end{bmatrix} \begin{bmatrix} 8 & 3 & 1 & -2 & -3 \\ 0 & -37/4 & 1/4 & 3/2 & -7/4 \\ 0 & 0 & 38/_{37} & -68/_{37} & -273/_{74} \\ 0 & 0 & 0 & -1 & 5/_2 \\ 0 & 0 & 0 & 0 & -1 & 5/_2 \\ 0 & 0 & 0 & 0 & 0 & 97/_{38} \end{bmatrix}$$

Calculate det(A).

Problem 3. For $n \times n$ matrices A and B, $det(A^{\intercal}) =$ _____ and det(AB) =_____.

Problem 4. If possible, find 3×3 matrices A and B satisfying $\det(A + B) \neq \det(A) + \det(B)$. If this is not possible, then explain why.

Problem 5. The (i, j) minor of A is $M_{ij} = _$ and the (i, j) cofactor is $C_{ij} = _$

Problem 6. Suppose that $\det(A) = 35$ and that each (i, j) minor of A is the (i, j) entry of $M = \begin{bmatrix} -45 & -9 & -41 & 5\\ -10 & 5 & 15 & 5\\ 45 & 16 & 34 & -5\\ -10 & -2 & -13 & 5 \end{bmatrix}$. (a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.

(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A\boldsymbol{x} = \boldsymbol{b}$ for $\boldsymbol{b} = \begin{bmatrix} 0 & 7 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$.

Math 218D: Week 10 Discussion

Study Copy

October 28, 2021

Problem 1. The reciprocal of z = 7 - 9i is $1/z = ____+___i$, **Problem 2.** Consider the vectors $\boldsymbol{v} = \begin{bmatrix} 1+i & 5 \end{bmatrix}^{\mathsf{T}}$ and $\boldsymbol{w} = \begin{bmatrix} 1-3i & 2+i \end{bmatrix}^{\mathsf{T}}$ and the matrix $A = \begin{bmatrix} 2 & 1+i & -1 \\ 0 & 1 & 3-2i \end{bmatrix}$. (a) Calculate $\|\boldsymbol{v}\|$.

(c) Calculate $A^* \boldsymbol{v}$

Problem 4. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 5. Suppose that U is $n \times n$ unitary and that $v, w \in \mathbb{C}^n$. Show that $\langle Uv, Uw \rangle = \langle v, w \rangle$.

Problem 6. The polynomial

$$f(t) = t^4 - 2t^3 - t^2 + t - 14$$

has four distinct roots r_1 , r_2 , r_3 , and r_4 .

(a)
$$r_1 + r_2 + r_3 + r_4 = _$$
 and $r_1 r_2 r_3 r_4 = _$

(b) Calculate $(1 - r_1)(1 - r_2)(1 - r_3)(1 - r_4)$.

Problem 7. Let r_1 and r_2 be the roots of

$$f(t) = -9t^2 - 2t - 1$$

Calculate $r_1^2 + r_2^2$. Hint. Consider $(r_1 + r_2)^2$.

Math 218D: Week 11 Discussion

STUDY COPY

November 4, 2021

Problem 1. Consider the equation

$$\begin{bmatrix} A & X & B & X^{-1} \\ 10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} = \begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} \begin{bmatrix} -1 & * & -7 & -1 \\ 0 & 0 & * & * \\ -16 & -1 & -6 \\ * & * & 2 & -1 \end{bmatrix} \begin{bmatrix} 11 & 10 & 0 & 3 \\ * & -7 & * & -3 \\ -16 & -1 & -6 \\ * & * & 2 & -1 \end{bmatrix}$$

where the entries marked \ast are unknown. Find the missing entry of A.

Problem 2. Suppose that A has eigenspaces given by

 $\mathcal{E}_{A}(7) = \operatorname{Span}\{\begin{bmatrix} 1 & 3 & 0 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_{A}(1) = \operatorname{Span}\{\begin{bmatrix} -2 & -5 & -5 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_{A}(-1) = \operatorname{Span}\{\begin{bmatrix} -3 & -7 & -9 \end{bmatrix}^{\mathsf{T}}\}$ Calculate $A^{2021}v$ for $v = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix}^{\mathsf{T}}$.

Problem 3. Consider the factorization

$$\begin{bmatrix} -233 & 693 \\ -84 & 250 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 19 \end{bmatrix} \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix}^{-1}$$

 $(a) \det(A) = _$

(b) Find the solution $\boldsymbol{u}(t)$ to the initial value problem $d\boldsymbol{u}/dt = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$.

(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to $d\boldsymbol{u}/dt = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \boldsymbol{v}$ satisfies $\lim_{t \to \infty} \boldsymbol{u}(t) = \boldsymbol{O}$. Find a basis of V.

Math 218D: Week 12 Discussion

Study Copy

November 11, 2021

Problem 1. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 2. Suppose S is a real-symmetric matrix whose eigenspaces are given by

 $\mathcal{E}_{S}(-3) = \operatorname{Span}\{\begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & -3 & -2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_{S}(5) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_{S}(9) = ?$

(a) Find a basis of $\mathcal{E}_S(9)$.

(b) Find a spectral factorization of S.

Problem 3. Show that the following quadratic form is *indefinite*.

$$q(\mathbf{x}) = 2x_1^2 + 8x_1x_2 + 2x_2^2 + 2x_1x_3 + 34x_2x_3 + 3670x_3^2 + 2x_1x_4 - 2x_2x_4 - 10x_3x_4 - 4x_4^2$$

Hint. We can do this very quickly by plugging in two vectors into q(x).

Problem 4. Show that every Gramian is positive semidefinite. Under what condition is a Gramian positive definite?

Problem 5. Consider the spectral factorization

$$\begin{bmatrix} 2 & 3 & -11 \\ 3 & 10 & -3 \\ -11 & -3 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 16 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -9 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Let $q(x_1, x_2, x_3)$ be the quadratic form corresponding to S.

- $(a) \quad q(x_1, x_2, x_3) = \underbrace{\cdot x_1^2 + \cdot x_2^2 + \cdot x_3^2 + \cdot x_1 x_2 + \cdot x_1 x_3 + \cdot x_2 x_3}_{(a) \quad a = 1, a = 1,$
- (b) What is the definiteness of S? Select all that apply. \bigcirc pos definite \bigcirc pos semidefinite \bigcirc neg definite \bigcirc neg semidefinite \bigcirc indefinite
- (c) To "complete the square" we introduce variables $\{y_1, y_2, y_3\}$. Fill-in the blanks below to express $\{y_1, y_2, y_3\}$ in terms of the variables $\{x_1, x_2, x_3\}$.

$$y_1 =$$
_____ $y_2 =$ _____ $y_3 =$ _____

Fill-in the blanks below to express $q(x_1, x_2, x_3)$ as a function of $\{y_1, y_2, y_3\}$.

- $q(y_1, y_2, y_3) = \underbrace{\qquad \cdot y_1^2}_{-} + \underbrace{\qquad \cdot y_2^2}_{-} + \underbrace{\qquad \cdot y_3^2}_{-} + \underbrace{\qquad \cdot y_1 y_2}_{-} + \underbrace{\qquad \cdot y_1 y_3}_{-} + \underbrace{\qquad \cdot y_2 y_3}_$
- (d) If possible, find a matrix A such that $S = A^*A$. If this is not possible, then explain why.

Math 218D: Week 13 Discussion

STUDY COPY

November 18, 2021

Problem 1. What is a singular value decomposition?

Problem 2. Let σ_1 , σ_2 , and σ_3 be the singular values of

$$A = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 2 & -2 & -1 & 0 \\ -3 & -1 & 0 & -1 \end{bmatrix}$$

Calculate $\sigma_1^2 + \sigma_2^2 + \sigma_3^2$.

Problem 3. If possible, construct a 2 × 2 matrix A with characteristic polynomial $\chi_A(t) = (t-1)^2$ and with exactly one singular value given by $\sigma_1 = 1$. If this is not possible, then explain why.

Problem 4. Find the singular values of $A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ -1 & 1 & -1 & -2 \\ 2 & -2 & 2 & 4 \end{bmatrix}$.

Problem 5. Suppose A is 3×3 with exactly two singular values $\sigma_1 = \sqrt{19}$ and $\sigma_2 = 3$. If possible, calculate det(A). If not, then examplain why.

Problem 6. Suppose that $A = U\Sigma V^*$ is a singular value decomposition and define $A^+ = V\Sigma^{-1}U^*$. Show that A^+b is a least squares approximate solution to $A\mathbf{x} = \mathbf{b}$.

Math 218D: Week 15 Discussion

Study Copy

December 2, 2021

Problem 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be the function defined by

$$\boldsymbol{f}(x,y) = \begin{bmatrix} x^2 + \sin(x) \\ x(y-2) \\ -3xy + y^2 \end{bmatrix}$$

Use the local linearization of f at the point P = (0, 1) to approximate f(1/2, 1/2).

Problem 2. Calculate $S = LDL^{\intercal}$ where $S = \begin{bmatrix} 2 & 12 & 10 \\ 12 & 67 & 105 \\ 10 & 105 & -351 \end{bmatrix}$.

Problem 3. Suppose that factoring $S = LDL^{\intercal}$ allows us to write the quadratic form $q(\boldsymbol{x}) = \langle \boldsymbol{x}, S\boldsymbol{x} \rangle$ as

$$q(\mathbf{x}) = 10 (x_1 - 5x_2 + 2x_3)^2 - 11 (x_2 - 6x_3)^2 - 5x_3^2$$

Find L and D and determine the definitess of S.

Problem 4. Determine the definiteness of $S = \begin{bmatrix} 0 & 4 & -6 & 8 & 16 \\ 4 & -650 & 3 & 1941 & -1 \\ -6 & 3 & 8 & -144 & 16 \\ 8 & 1941 & -144 & 2 & 18 \\ 16 & -1 & 16 & 18 & 52 \end{bmatrix}$.

			-0
Problem 5. Find R the Cholesky factorization $S = R^{\intercal}R$ of $S =$	15	29	8
	-6	8	206

ς٦