Math 218D: Week 1 Discussion

Study Copy

August 26, 2021

Problem 1. Fill in the blanks below.

$$
A=\left[\begin{array}{rrrrr}
3 & -4 & 2 & 8 & 0 \\
1 & 8 & 1 / 9 & 0 & 1 \\
2 & 4 & -1 & \pi & 2
\end{array}\right] \quad a_{23}=\square \quad \operatorname{Col}_{2}(A) \in \mathbb{R}-\quad A^{\top}=
$$

Problem 2. Fill in the blanks below, assuming that S is symmetric.

$$
S=\left[\begin{array}{rrrr}
5 & -4 & - & - \\
- & 19 & - & -1 \\
11 & 2 & 8 & 3 \\
9 & - & - & -10
\end{array}\right]
$$

Problem 3. By definition, a matrix S is symmetric if \qquad .

Problem 4. Suppose that A is $n \times n$ and let $S=A+A^{\top}$. Prove that S is symmetric.
Hint. This proof can be quickly accomplished by filling in the blanks below.
\qquad $=$

$=$ \qquad $=$ \qquad

Problem 5. Consider the matrix R given by

$$
R=\left[\begin{array}{rrrrr}
1 & -3 & 0 & -9 & 5 \\
0 & 0 & 1 & 14 & 9 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{Col}_{4}(R)=\ldots \operatorname{Col}_{1}(R)+\ldots \operatorname{Col}_{3}(R)
$$

(a) Fill in the blanks above to express the fourth column of R as a linear combination of the first and third columns of R.
(b) Can the fifth column of R be expressed as a linear combination of the first and third columns of R ? Explain why or why not.

Problem 6. We write $\mathbb{R}^{9} \xrightarrow{A} \mathbb{R}^{22}$ to indicate that A is a \qquad \times \qquad matrix.

Problem 7. Suppose $\mathbb{R}^{13} \xrightarrow{M^{\top}} \mathbb{R}^{37}$. Then M is a \qquad \times \qquad matrix.

Problem 8. Fill in the blanks in the two equations below.

Problem 9. Fill in the blanks in each equation below.

Problem 10. Suppose that A has four columns. Fill in the blanks in the equation on the right to validate the equation on the left.

Problem 11. Consider the weighted digraph G depicted below.

Use a matrix-vector product to calculate the weighted net flow through each node of G.

Math 218D: Week 2 Discussion
 Study Copy

September 2, 2021

Problem 1. $\left\langle\left[\begin{array}{llll}1 & -3 & 0 & 2\end{array}\right]^{\top},\left[\begin{array}{llll}2 & 1 & 5 & 0\end{array}\right]^{\top}\right\rangle=-$
Problem 2. Which of the following vectors is orthogonal to $\boldsymbol{v}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{\top}$?$\boldsymbol{w}=\left[\begin{array}{lllll}3 & -5 & 2 & 1 & 0\end{array}\right]^{\top}$$\boldsymbol{x}=\left[\begin{array}{lllll}9 & 2 & 3 & -6 & -8\end{array}\right]^{\top}$

○ $\boldsymbol{y}=[-1$
Problem 3. The length of \boldsymbol{v} can be calculated with an inner product using the formula $\|\boldsymbol{v}\|=$

Problem 4. The inner product can be interpreted geometrically with the formula $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=$
Problem 5. If we view $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ as $n \times 1$ matrices, then $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ can be calculated using matrix multiplication with the formula $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=$ \qquad
Problem 6. The adjoint formula for inner products states that $\langle A \boldsymbol{v}, \boldsymbol{w}\rangle=$ \qquad .

Problem 7. Suppose that A and B are matrices satisfying $A^{\top} B=I_{n}$ and that \boldsymbol{v} and \boldsymbol{w} vectors making the following diagrams accurate.

Calculate $\langle B \boldsymbol{v}-3 \boldsymbol{w}, 2 A \boldsymbol{v}-A \boldsymbol{w}\rangle$.

Problem 8. One of the following calculations is possible and the other is not. Carry out the possible calculation.

$$
\left[\begin{array}{rr}
5 & -1 \\
1 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-2 & 1 \\
3 & -3
\end{array}\right]=\square\left[\begin{array}{rr}
5 & -1 \\
1 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{rrr}
0 & -2 & 3 \\
1 & 1 & -3
\end{array}\right]=
$$

Problem 9. Fill in the blanks in each of the following two equations.

$$
\left[\begin{array}{lll}
- & - \\
-
\end{array}\right]\left[\begin{array}{rrrr}
0 & -3 & 1 & 0 \\
1 & 9 & 0 & 0 \\
0 & 4 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
9 & 50 & 5 & -4 \\
12 & 193 & -3 & 19
\end{array}\right] \quad\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
5 & 9 \\
2 & -5 \\
0 & 9
\end{array}\right]
$$

Problem 10. Suppose that A and B are 2021×2021. Prove that $S=B^{\top} A+A^{\top} B$ is symmetric.

Problem 11. The last column of a matrix A is $\left[\begin{array}{lll}0 & 3 & 4\end{array}\right]^{\top}$ and the Gramian of A is

(a) Fill in the missing entries of G and fill in the formula used to calculate G.
(b) The number of rows of A is \qquad and the number of columns of A is \qquad
(c) Which (if any) of the columns of A is orthogonal to the third column of A ?

Math 218D: Week 3 Discussion

Study Copy

September 9, 2021

Problem 1. Consider the system of equations given by

$$
\begin{aligned}
& x_{1}+2 x_{2}-4 x_{3}+9 x_{4}=-2 \\
& 5 x_{1}+11 x_{2}-13 x_{3}+37 x_{4}=7 \\
& -3 x_{1}-6 x_{2}+12 x_{3}-24 x_{4}=0
\end{aligned}
$$

Use the Gauß-Jordan algorithm to find the general solution to this system.

Problem 2. Suppose A is a matrix satisfying $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & -1 & 0 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Fill-in the blanks below.

Problem 3. Use the Gauß-Jordan algorithm to calculate $\operatorname{rref}(A)$ where $A=\left[\begin{array}{rrrrr}3 & -6 & 12 & 0 & -9 \\ -7 & 14 & -28 & -5 & 26 \\ 5 & -12 & 12 & 2 & -13 \\ 2 & -3 & 12 & -3 & -5\end{array}\right]$

Math 218D: Week 4 Discussion
 Study Copy

September 16, 2021

Problem 1. Use the Gauß-Jordan algorithm to calculate $E A=R$ where $A=\left[\begin{array}{rrrr}1 & -5 & 0 & 3 \\ 0 & 0 & 5 & -5 \\ -5 & 25 & -11 & -4\end{array}\right]$.

Problem 2. Consider the $E A=R$ factorization and the vector \boldsymbol{b} given by

$$
\left[\begin{array}{rrrr}
-6 & 5 & 2 & -13 \\
4 & -4 & -2 & 9 \\
-9 & 9 & 4 & -21 \\
1 & -2 & -1 & 3
\end{array}\right]\left[\begin{array}{rrrrrr}
-3 & 21 & 2 & -26 & -5 & 3 \\
3 & -21 & 1 & 14 & 38 & -2 \\
-3 & 21 & -3 & -6 & -60 & 1 \\
2 & -14 & -1 & 16 & 7 & -2
\end{array}\right]=\left[\begin{array}{rrrrrr}
1 & -7 & 0 & 6 & 9 & 0 \\
0 & 0 & 1 & -4 & 11 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{r}
-1 \\
0 \\
2 \\
1
\end{array}\right]
$$

Determine if $A \boldsymbol{x}=\boldsymbol{b}$ is consistent without doing any row operations.

Problem 3. Calculate $P A=L U$ where $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \\ 3 & -1 & 1\end{array}\right]$.

Problem 4. Consider the $P A=L U$ factorization and the vector \boldsymbol{b} given by

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 0 & 0 \\
-1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{r}
15 \\
11 \\
-15 \\
13
\end{array}\right]
$$

[^0]
Math 218D: Week 5 Discussion
 Study Copy

September 23, 2021

Problem 1. To verify if $\boldsymbol{v} \in \operatorname{Null}(A)$ we must check the equation \qquad
Problem 2. Show that $\boldsymbol{v}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$ is in the null space of $A=\left[\begin{array}{lll}2 & 1 & 4 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \\ 0 & 1 & 2\end{array}\right]$.

Problem 3. Suppose A is 5×9 and that $\boldsymbol{v} \in \operatorname{Null}(A)$. Then $\boldsymbol{v} \in \mathbb{R}$.
Problem 4. Suppose that A has four columns related by the equation $\operatorname{Col}_{4}=3 \operatorname{Col}_{1}+\operatorname{Col}_{2}-\operatorname{Col}_{3}$. Find a nonzero vector $\boldsymbol{v} \in \operatorname{Null}(A)$.

Problem 5. A scalar λ is an eigenvalue of A if

Problem 6. The eigenspace of A corresponding to an eigenvalue λ is $\mathcal{E}_{A}(\lambda)=$

Problem 7. An eigenvector $\boldsymbol{v} \in \mathcal{E}_{A}(\lambda)$ satisfies the equation
Problem 8. Show that $\boldsymbol{v}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{rrr}10 & -6 & 6 \\ 6 & -2 & 6 \\ -6 & 6 & -2\end{array}\right]$ and identify the eigenvalue.

Problem 9. Find all vectors in $\mathcal{E}_{A}(-3)$ where $A=\left[\begin{array}{rrr}-23 & 40 & -60 \\ -5 & 7 & -15 \\ 5 & -10 & 12\end{array}\right]$.

Problem 10. To verify if $\boldsymbol{v} \in \operatorname{Col}(A)$ we must check the equation

Problem 11. Determine if $\boldsymbol{v}=\left[\begin{array}{r}6 \\ 12 \\ 2\end{array}\right]$ is in the column space of $A=\left[\begin{array}{rrr}1 & -3 & 4 \\ 2 & -6 & 8 \\ -3 & 9 & -12\end{array}\right]$.

Problem 12. To verify if $\boldsymbol{v} \in \operatorname{Span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ we must check \qquad .

Problem 13. Determine if $\left[\begin{array}{lll}3 & 0 & 1\end{array}\right]^{\top} \in \operatorname{Span}\left\{\left[\begin{array}{lll}1 & -3 & -3\end{array}\right]^{\top},\left[\begin{array}{lll}-1 & 4 & 3\end{array}\right]^{\top}\right\}$.

Math 218D: Week 6 Discussion
 Study Copy

September 30, 2021

Problem 1. By definition, what does it mean to call a list of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ linearly dependent?

Problem 2. By definition, what does it mean to call a list of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ linearly independent?

Problem 3. Determine if $\left\{\left[\begin{array}{lll}1 & -3 & 1\end{array}\right]^{\top},\left[\begin{array}{lll}-4 & 13 & -3\end{array}\right]^{\top},\left[\begin{array}{lll}5 & -17 & 3\end{array}\right]^{\top}\right\}$ is independent.

Problem 4. Suppose that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3} \in \mathbb{R}^{n}$ and let A be an $m \times n$ matrix such that $\left\{A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, A \boldsymbol{v}_{3}\right\}$ is linearly independent. Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent.

Problem 5. The columns of a matrix A are independent if and only if \qquad .

Problem 6. Consider the calculations

$$
\operatorname{rref}\left[\begin{array}{rrr}
9 & 4 & 4 \\
-36 & -16 & -16 \\
20 & 9 & 4 \\
-49 & -22 & -12
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 20 \\
0 & 1 & -44 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{rref}\left[\begin{array}{rrrr}
9 & -36 & 20 & -49 \\
4 & -16 & 9 & -22 \\
4 & -16 & 4 & -12
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -4 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the pivot solutions to $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{O}$. These vectors form a basis of \qquad -
(b) Find the pivot solutions to $A^{\top} \boldsymbol{v}=\boldsymbol{O}$. These vectors form a basis of \qquad -.
(c) Find the pivot columns of A. These vectors form a basis of \qquad -.
(d) Find the nonzero rows of $\operatorname{rref}(A)$. These vectors form a basis of \qquad .
(e) The pivot columns of A^{\top} form a basis of \qquad _.
(f) The nonzero rows of $\operatorname{rref}\left(A^{\top}\right)$ form a basis of \qquad -.
(g) Fill in the blanks in the figure below.

Math 218D: Week 7 Discussion
 Study Copy

October 7, 2021

Problem 1. Suppose that A is a matrix satisfying

$$
\operatorname{Col}\left(A^{\top}\right)=\operatorname{Span}\left\{\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]^{\top},\left[\begin{array}{llll}
0 & 3 & 2 & 4
\end{array}\right]^{\top}\right\} \quad \operatorname{Null}\left(A^{\top}\right)=\operatorname{Span}\left\{\left[\begin{array}{lll}
2 & 1 & 1
\end{array}\right]^{\top}\right\}
$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

(b) Determine if $\boldsymbol{v}=\left[\begin{array}{llll}1 & 0 & 2 & -1\end{array}\right]^{\top}$ satisfies $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{O}$.
(c) Determine if $\boldsymbol{b}=\left[\begin{array}{lll}3 & 5 & 2\end{array}\right]^{\top}$ makes the system $A \boldsymbol{x}=\boldsymbol{b}$ consistent.
(d) $\operatorname{Explain}$ why $\operatorname{Null}(A) \neq \operatorname{Span}\left\{\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{\top},\left[\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right]^{\top}\right\}$.

Problem 2. Suppose $E A=R$ where

$$
E=\left[\begin{array}{rrrr}
1 & -3 & -1 & 17 \\
-3 & 10 & 5 & -56 \\
5 & -19 & -12 & 105 \\
-1 & 7 & 7 & -36
\end{array}\right] \quad R=\left[\begin{array}{rrrrr}
1 & -3 & 0 & -7 & 0 \\
0 & 0 & 1 & 9 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions
(b) Find a basis of $\operatorname{Col}\left(A^{\top}\right)$.
(c) Find a basis of $\operatorname{Null}\left(A^{\top}\right)$.
(d) Find a basis of $\operatorname{Null}(A)$.

(e) Find a basis of $\operatorname{Col}(A)$.

Math 218D: Week 8 Discussion
 Study Copy

October 14, 2021

Problem 1. The least squares problem associated to $A \boldsymbol{x}=\boldsymbol{b}$ is

Problem 2. Suppose $\widehat{\boldsymbol{x}}$ is a least squares approximate solution to $A \boldsymbol{x}=\boldsymbol{b}$. Then $A \widehat{\boldsymbol{x}}=$

Problem 3. The least squares error is defined as

Problem 4. Define the concept of an $A=Q R$ factorization.

Problem 5. A matrix M has orthonormal columns if and only if $M^{\top} M=$

Problem 6. Given $A=Q R$, projection onto $\operatorname{Col}(A)$ is given by $P_{\operatorname{Col}(A)}=$

Problem 7. Suppose $A=Q R$ where A has full column rank. Then the least squares problem $A^{\top} A \widehat{\boldsymbol{x}}=A^{\top} \boldsymbol{b}$ reduces to

Problem 8. Suppose that A is $m \times n$ with orthonormal columns and that $\boldsymbol{v} \in \mathbb{R}^{n}$.
(a) Show that $\|A \boldsymbol{v}\|=\|\boldsymbol{v}\|$.
(b) Show that $n \leq m$.

Problem 9. The figure below depicts the result of using the technique of least squares to fit a curve of the form $f(x)=c_{0}+c_{1} \cos (\pi x / 3)+c_{2} \sin (\pi x / 3)$ to four data points.

Find the values of c_{0}, c_{1}, and c_{2} and calculate the error in using $f(x)$ to approximate this data.

Math 218D: Week 9 Discussion

Study Copy

October 21, 2021

Problem 1. Calculate $\left|\begin{array}{rrrr}1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -7 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52\end{array}\right|$.

Problem 2. Consider the following matrix factorization

Calculate $\operatorname{det}(A)$.
\qquad and $\operatorname{det}(A B)=$ \qquad .
Problem 3. For $n \times n$ matrices A and $B, \operatorname{det}\left(A^{\boldsymbol{\top}}\right)=$
Problem 4. If possible, find 3×3 matrices A and B satisfying $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$. If this is not possible, then explain why.

Problem 5. The (i, j) minor of A is $M_{i j}=$ \qquad and the (i, j) cofactor is $C_{i j}=$ \qquad -.

Problem 6. Suppose that $\operatorname{det}(A)=35$ and that each (i, j) minor of A is the (i, j) entry of $M=\left[\begin{array}{rrrr}-45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ -15 & 16 & 34 & 5 \\ -10 & -2 & -13 & 5\end{array}\right]$.
(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.
(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A \boldsymbol{x}=\boldsymbol{b}$ for $\boldsymbol{b}=\left[\begin{array}{llll}0 & 7 & 0 & 0\end{array}\right]^{\top}$.

Problem 7. Suppose that λ is an eigenvalue of an $n \times n$ matrix A. Then $\operatorname{det}\left(\lambda \cdot I_{n}-A\right)=$

Math 218D: Week 10 Discussion
 Study Copy

October 28, 2021

Problem 1. The reciprocal of $z=7-9 i$ is $1 / z=$ \qquad $+$ \qquad
Problem 2. Consider the vectors $\boldsymbol{v}=\left[\begin{array}{ll}1+i & 5\end{array}\right]^{\top}$ and $\boldsymbol{w}=\left[\begin{array}{lll}1-3 i & 2+i\end{array}\right]^{\top}$ and the matrix $A=\left[\begin{array}{lll}2 \\ 0\end{array} \begin{array}{ll}1+i & -1 \\ 1 & 3-2\end{array}\right]$. (a) Calculate $\|\boldsymbol{v}\|$.
(b) Calculate $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.
(c) Calculate $A^{*} \boldsymbol{v}$.

Problem 3. We call a matrix A Hermitian if \qquad We call A unitary if \qquad -.

Problem 4. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 5. Suppose that U is $n \times n$ unitary and that $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{C}^{n}$. Show that $\langle U \boldsymbol{v}, U \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.

Problem 6. The polynomial

$$
f(t)=t^{4}-2 t^{3}-t^{2}+t-14
$$

has four distinct roots r_{1}, r_{2}, r_{3}, and r_{4}.
(a) $r_{1}+r_{2}+r_{3}+r_{4}=$ \qquad
(b) Calculate $\left(1-r_{1}\right)\left(1-r_{2}\right)\left(1-r_{3}\right)\left(1-r_{4}\right)$.

Problem 7. Let r_{1} and r_{2} be the roots of

$$
f(t)=-9 t^{2}-2 t-1
$$

Calculate $r_{1}^{2}+r_{2}^{2}$.
Hint. Consider $\left(r_{1}+r_{2}\right)^{2}$.

Math 218D: Week 11 Discussion
 Study Copy

November 4, 2021

Problem 1. Consider the equation
where the entries marked $*$ are unknown. Find the missing entry of A.

Problem 2. Suppose that A has eigenspaces given by

$$
\mathcal{E}_{A}(7)=\operatorname{Span}\left\{\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{A}(1)=\operatorname{Span}\left\{\left[\begin{array}{lll}
-2 & -5 & -5
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{A}(-1)=\operatorname{Span}\left\{\left[\begin{array}{lll}
-3 & -7 & -9
\end{array}\right]^{\top}\right\}
$$

Calculate $A^{2021} \boldsymbol{v}$ for $\boldsymbol{v}=\left[\begin{array}{lll}0 & -1 & 3\end{array}\right]^{\top}$.

Problem 3. Consider the factorization

$$
\left[\begin{array}{rr}
A & \\
-233 & 693 \\
-84 & 250
\end{array}\right]=\left[\begin{array}{rr}
3 & 11 \\
1 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 0 \\
0 & 19
\end{array}\right]\left[\begin{array}{rr}
3 & 11 \\
1 & 4
\end{array}\right]^{-1}
$$

(a) $\operatorname{det}(A)=$
(b) Find the solution $\boldsymbol{u}(t)$ to the initial value problem $d \boldsymbol{u} / d t=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$.

(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to $d \boldsymbol{u} / d t=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\boldsymbol{v}$ satisfies $\lim _{t \rightarrow \infty} \boldsymbol{u}(t)=\boldsymbol{O}$. Find a basis of V.

Math 218D: Week 12 Discussion Study Copy

November 11, 2021

Problem 1. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 2. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$
\mathcal{E}_{S}(-3)=\operatorname{Span}\left\{\left[\begin{array}{llll}
1 & -2 & 0 & 2
\end{array}\right]^{\top},\left[\begin{array}{llll}
-1 & -3 & -2 & 2
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{S}(5)=\operatorname{Span}\left\{\left[\begin{array}{llll}
0 & 2 & -1 & 2
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{S}(9)=?
$$

(a) Find a basis of $\mathcal{E}_{S}(9)$.
(b) Find a spectral factorization of S.

Problem 3. Show that the following quadratic form is indefinite.

$$
q(\boldsymbol{x})=2 x_{1}^{2}+8 x_{1} x_{2}+2 x_{2}^{2}+2 x_{1} x_{3}+34 x_{2} x_{3}+3670 x_{3}^{2}+2 x_{1} x_{4}-2 x_{2} x_{4}-10 x_{3} x_{4}-4 x_{4}^{2}
$$

Hint. We can do this very quickly by plugging in two vectors into $q(\boldsymbol{x})$.

Problem 4. Show that every Gramian is positive semidefinite. Under what condition is a Gramian positive definite?

Problem 5. Consider the spectral factorization

$$
\left[\begin{array}{rrr}
2 & 3 & -11 \\
3 & 10 & -3 \\
-11 & -3 & 2
\end{array}\right]=\left[\begin{array}{rcr}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\
\frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{rcc}
16 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -9
\end{array}\right]\left[\begin{array}{rcc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Let $q\left(x_{1}, x_{2}, x_{3}\right)$ be the quadratic form corresponding to S.
(a) $q\left(x_{1}, x_{2}, x_{3}\right)=$ \qquad $\cdot x_{1}^{2}+\quad \cdot x_{2}^{2}+$ \qquad - $x_{3}^{2}+$ \qquad - $x_{1} x_{2}+$ \qquad - $x_{1} x_{3}+$ \qquad - $x_{2} x_{3}$
(b) What is the definiteness of S ? Select all that apply.
\bigcirc pos definitepos semidefiniteneg definiteneg semidefiniteindefinite
(c) To "complete the square" we introduce variables $\left\{y_{1}, y_{2}, y_{3}\right\}$. Fill-in the blanks below to express $\left\{y_{1}, y_{2}, y_{3}\right\}$ in terms of the variables $\left\{x_{1}, x_{2}, x_{3}\right\}$.

$$
y_{1}=\square \quad y_{2}=\square \quad y_{3}=
$$

\qquad
Fill-in the blanks below to express $q\left(x_{1}, x_{2}, x_{3}\right)$ as a function of $\left\{y_{1}, y_{2}, y_{3}\right\}$.
$q\left(y_{1}, y_{2}, y_{3}\right)=$ \qquad - $y_{1}^{2}+$ \qquad - $y_{2}^{2}+$ \qquad $\cdot y_{3}^{2}+$ \qquad - $y_{1} y_{2}+$ \qquad $\cdot y_{1} y_{3}+$ \qquad - $y_{2} y_{3}$
(d) If possible, find a matrix A such that $S=A^{*} A$. If this is not possible, then explain why.

Math 218D: Week 13 Discussion
 Study Copy

November 18, 2021

Problem 1. What is a singular value decomposition?

Problem 2. Let σ_{1}, σ_{2}, and σ_{3} be the singular values of

$$
A=\left[\begin{array}{rrrr}
2 & 0 & 1 & 1 \\
2 & -2 & -1 & 0 \\
-3 & -1 & 0 & -1
\end{array}\right]
$$

Calculate $\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}$.

Problem 3. If possible, construct a 2×2 matrix A with characteristic polynomial $\chi_{A}(t)=(t-1)^{2}$ and with exactly one singular value given by $\sigma_{1}=1$. If this is not possible, then explain why.

Problem 4. Find the singular values of $A=\left[\begin{array}{rrrr}1 & -1 & 1 & 2 \\ -1 & 1 & -1 & -2 \\ 2 & -2 & 2 & 4\end{array}\right]$.

Problem 5. Suppose A is 3×3 with exactly two singular values $\sigma_{1}=\sqrt{19}$ and $\sigma_{2}=3$. If possible, calculate $\operatorname{det}(A)$. If not, then exmplain why.

Problem 6. Suppose that $A=U \Sigma V^{*}$ is a singular value decomposition and define $A^{+}=V \Sigma^{-1} U^{*}$. Show that $A^{+} \boldsymbol{b}$ is a least squares approximate solution to $A \boldsymbol{x}=\boldsymbol{b}$.

Math 218D: Week 15 Discussion
 Study Copy

December 2, 2021

Problem 1. Let $\boldsymbol{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the function defined by

$$
\boldsymbol{f}(x, y)=\left[\begin{array}{r}
x^{2}+\sin (x) \\
x(y-2) \\
-3 x y+y^{2}
\end{array}\right]
$$

Use the local linearization of \boldsymbol{f} at the point $P=(0,1)$ to approximate $\boldsymbol{f}(1 / 2,1 / 2)$.

Problem 2. Calculate $S=L D L^{\top}$ where $S=\left[\begin{array}{rrr}2 & 12 & 10 \\ 12 & 67 & 105 \\ 10 & 105 & -351\end{array}\right]$.

Problem 3. Suppose that factoring $S=L D L^{\top}$ allows us to write the quadratic form $q(\boldsymbol{x})=\langle\boldsymbol{x}, S \boldsymbol{x}\rangle$ as

$$
q(\boldsymbol{x})=10\left(x_{1}-5 x_{2}+2 x_{3}\right)^{2}-11\left(x_{2}-6 x_{3}\right)^{2}-5 x_{3}^{2}
$$

Find L and D and determine the definitess of S.

Problem 4. Determine the definiteness of $S=\left[\begin{array}{rrrrr}0 & 4 & -6 & 8 & 16 \\ 4 & -650 & 3 & 1941 & 1 \\ -6 & 3 & 8 & 8 \\ 8 & 1941 & -144 & -144 & 16 \\ 16 & -1 & 16 & 18 & 18 \\ 16 & -1\end{array}\right]$

Problem 5. Find R the Cholesky factorization $S=R^{\boldsymbol{\top}} R$ of $S=\left[\begin{array}{rrr}9 & 15 & -6 \\ 15 & 29 & 8 \\ -6 & 8 & 206\end{array}\right]$.

[^0]: Solve $A \boldsymbol{x}=\boldsymbol{b}$ without doing any row reductions.

