Cholesky Factorizations

]	4	-2	-2	-20	
Problem 1. Find the definiteness of $S =$	-2	1	1	10	
	-2	1	17	14	•
	-20	10	14	105	
	-			-	

	2	12	10
Problem 2. Calculate $S = LDL^{\intercal}$ where $S =$	12	67	105 .
Problem 2. Calculate $S = LDL^{\intercal}$ where $S =$	10	105	-351

Problem 3. Suppose that factoring $S = LDL^{\intercal}$ allows us to write the quadratic form $q(\boldsymbol{x}) = \langle \boldsymbol{x}, S\boldsymbol{x} \rangle$ as

$$q(\mathbf{x}) = 10 (x_1 - 5 x_2 + 2 x_3)^2 - 11 (x_2 - 6 x_3)^2 - 5 x_3^2$$

Find L and D and determine the definitess of S.

Problem 4. Determine the definiteness of $S = \begin{bmatrix} 0 & 4 & -6 & 8 & 16 \\ 4 & -650 & 3 & 1941 & -1 \\ -6 & 3 & 8 & -144 & 16 \\ 8 & 1941 & -144 & 2 & 18 \\ 16 & -1 & 16 & 18 & 52 \end{bmatrix}$.

	-		-	
	9	15	-6	
Problem 5. Find R the Cholesky factorization $S = R^{\intercal}R$ of $S =$	15	29	8	
Problem 5. Find R the Cholesky factorization $S = R^{\intercal}R$ of $S =$	[-6]	8	206	