Linear Approximations

Problem 1. Let $\boldsymbol{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the function defined by

$$
\boldsymbol{f}(x, y)=\left[\begin{array}{r}
x^{2}+\sin (x) \\
x(y-2) \\
-3 x y+y^{2}
\end{array}\right]
$$

Use the local linearization of \boldsymbol{f} at the point $P=(0,1)$ to approximate $f(1 / 2,1 / 2)$.

Problem 2. Let $\boldsymbol{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the function defined by

$$
\boldsymbol{r}(t)=\left[\begin{array}{r}
\cos (t) \\
\sin (t) \\
t
\end{array}\right]
$$

Use the local linearization of \boldsymbol{r} at $t=1 / 2 \pi$ to approximate $\boldsymbol{r}(1 / 2 \pi+1 / 3)$.

Problem 3. Consider $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
\boldsymbol{F}(r, \theta, z)=\left[\begin{array}{r}
r \cos (\theta) \\
r \sin (\theta) \\
z
\end{array}\right]
$$

Show that $\operatorname{det}(D \boldsymbol{F})=r$.

Problem 4. Consider $\boldsymbol{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
\boldsymbol{F}(\rho, \varphi, \theta)=\left[\begin{array}{r}
\rho \cos (\theta) \sin (\varphi) \\
\rho \sin (\theta) \sin (\varphi) \\
\rho \cos (\varphi)
\end{array}\right]
$$

Show that $\operatorname{det}(D \boldsymbol{F})=\rho^{2} \sin (\varphi)$.

