Math 218D: Week 1 Discussion

STUDY COPY

September 1, 2022

Problem 1. Fill in the blanks below.

$$A = \begin{bmatrix} 3 & -4 & 2 & 8 & 0 \\ 1 & 8 & 1/9 & 0 & 1 \\ 2 & 4 & -1 & \pi & 2 \end{bmatrix} \quad a_{23} = \underline{\qquad} \quad \operatorname{Col}_2(A) \in \mathbb{R}^{---} \quad A^{\mathsf{T}} = \underline{\qquad}$$

Problem 2. Fill in the blanks below, assuming that S is *symmetric*.

$$S = \begin{bmatrix} 5 & -4 & --- & --- \\ --- & 19 & --- & -1 \\ 11 & 2 & 8 & 3 \\ 9 & --- & --- & -10 \end{bmatrix}$$
 trace(S) = ____

Problem 3. By definition, a matrix S is symmetric if ______.

Problem 4. Suppose that A is $n \times n$ and let $S = A + A^{\intercal}$. Prove that S is symmetric.

Hint. This proof can be quickly accomplished by filling in the blanks below.

______=___=___=___=

Problem 5. Consider the matrix R given by

$$R = \begin{bmatrix} 1 & -3 & 0 & -9 & 5 \\ 0 & 0 & 1 & 14 & 9 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\operatorname{Col}_4(R) = \underline{\qquad} \operatorname{Col}_1(R) + \underline{\qquad} \operatorname{Col}_3(R)$

- (a) Fill in the blanks above to express the fourth column of R as a linear combination of the first and third columns of R.
- (b) Can the fifth column of R be expressed as a linear combination of the first and third columns of R? Explain why or why not.

Problem 6. We write $\mathbb{R}^9 \xrightarrow{A} \mathbb{R}^{22}$ to indicate that A is a ____ × ___ matrix.

Problem 7. Suppose $\mathbb{R}^{13} \xrightarrow{M^{\dagger}} \mathbb{R}^{37}$. Then M is a ____ × ___ matrix.

Problem 8. Fill in the blanks in the two equations below.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} \underline{\qquad} \\ \underline{\qquad} \end{bmatrix} + \underline{\qquad} \begin{bmatrix} \underline{\qquad} \\ \underline{\qquad} \end{bmatrix} + \underline{\qquad} \begin{bmatrix} \underline{\qquad} \\ \underline{\qquad} \end{bmatrix} = 11 \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix} - 42 \begin{bmatrix} 7 \\ 6 \\ 4 \end{bmatrix}$$

Problem 9. Fill in the blanks in each equation below.

$$\left[\begin{array}{c}A\end{array}\right]\left[\begin{array}{c} \\ \\ \end{array}\right] = \text{the third column of }A \qquad \left[\begin{array}{c}A\end{array}\right]\left[\begin{array}{c} \\ \\ \end{array}\right] = \text{the first column minus the third column of }A$$

$$\left[\begin{array}{c} A \end{array}\right] \left[\begin{array}{c} \\ \\ \\ \end{array}\right] = \text{the sum of all columns of } A \quad \left[\begin{array}{c} A \end{array}\right] \left[\begin{array}{c} \\ \\ \\ \end{array}\right] = \text{twice the first column of } A$$

Problem 10. Suppose that A has four columns. Fill in the blanks in the equation on the right to validate the equation on the left.

$$\operatorname{Col}_{1} + 3 \operatorname{Col}_{2} - 9 \operatorname{Col}_{3} = 6 \operatorname{Col}_{4}$$

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} --- \\ --- \end{bmatrix} = C$$

Problem 11. Find the missing entries in $A = \begin{bmatrix} * & 2 & -1 \\ -12 & -4 & 2 \\ * & 10 & -5 \\ * & 8 & -4 \end{bmatrix}$ assuming A has rank one.

Problem 12. We say that v is an eigenvector of A with corresponding eigenvalue λ if $Av = \underline{\hspace{1cm}}$.

Problem 13. Suppose that A is $n \times n$ and that $v \in \mathcal{E}_A(\lambda)$. Calculate $(\lambda \cdot I_n - A)v$.

Math 218D: Week 2 Discussion

STUDY COPY

September 8, 2022

Problem 1. $\langle \begin{bmatrix} 1 & -3 & 0 & 2 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 2 & 1 & 5 & 0 \end{bmatrix}^\mathsf{T} \rangle = \underline{\hspace{1cm}}$

Problem 2. Which of the following vectors is *orthogonal* to $v = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$?

$$\bigcirc \ \, \boldsymbol{w} = \begin{bmatrix} 3 & -5 & 2 & 1 & 0 \end{bmatrix}^\mathsf{T} \quad \bigcirc \ \, \boldsymbol{x} = \begin{bmatrix} 9 & 2 & 3 & -6 & -8 \end{bmatrix}^\mathsf{T} \quad \bigcirc \ \, \boldsymbol{y} = \begin{bmatrix} -1 & -1 & 9 & -10 & 3 \end{bmatrix}^\mathsf{T}$$

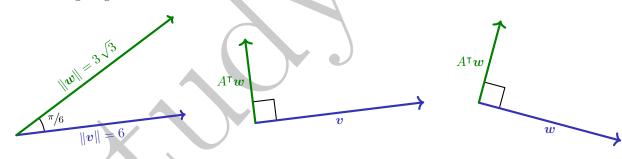
Problem 3. The length of v can be calculated with an inner product using the formula ||v|| = 1

Problem 4. The inner product can be interpreted geometrically with the formula $\langle v, w \rangle =$

Problem 5. If we view $v, w \in \mathbb{R}^n$ as $n \times 1$ matrices, then $\langle v, w \rangle$ can be calculated using matrix multiplication with the formula $\langle v, w \rangle =$

Problem 6. The adjoint formula for inner products states that $\langle Av, w \rangle =$

Problem 7. Suppose that A and B are matrices satisfying $A^{T}B = I_n$ and that \boldsymbol{v} and \boldsymbol{w} vectors making the following diagrams accurate.



Calculate $\langle B\boldsymbol{v} - 3\boldsymbol{w}, 2A\boldsymbol{v} - A\boldsymbol{w} \rangle$.

Problem 8. One of the following calculations is possible and the other is not. Carry out the possible calculation.

$$\begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 1 \\ 3 & -3 \end{bmatrix} = \underline{ \begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 & 3 \\ 1 & 1 & -3 \end{bmatrix} = \underline{ }$$

Problem 9. Fill in the blanks in each of the following two equations.

Problem 10. Suppose that A and B are 2022×2022 . Prove that $S = B^{\intercal}A + A^{\intercal}B$ is symmetric.

Problem 11. The last column of a matrix A is $\begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^{\mathsf{T}}$ and the Gramian of A is

- (a) Fill in the missing entries of G and fill in the formula used to calculate G.
- (b) The number of rows of A is $\underline{\hspace{1cm}}$ and the number of columns of A is $\underline{\hspace{1cm}}$.
- (c) Which (if any) of the columns of A is orthogonal to the third column of A?

Math 218D: Week 3 Discussion

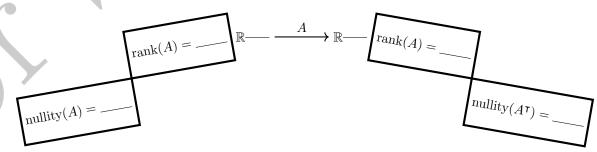
STUDY COPY

September 15, 2022

Problem 1. Consider the system of equations given by

Use the Gauß-Jordan algorithm to find the general solution to this system.

Problem 2. Suppose *A* is a matrix satisfying $\text{rref}(A) = \begin{bmatrix} 1 & -13 & 0 & 6 \\ 0 & 0 & 1 & 17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Fill-in the blanks below.



Math 218D: Week 4 Discussion

STUDY COPY

September 22, 2022

Problem 1. Use the Gauß-Jordan algorithm to calculate EA = R where $A = \begin{bmatrix} 1 & -5 & 0 & 3 \\ 0 & 0 & 5 & -5 \\ -5 & 25 & -11 & -4 \end{bmatrix}$

Problem 2. Consider the EA = R factorization and the vector \boldsymbol{b} given by

$$\begin{bmatrix} -6 & 5 & 2 & -13 \\ 4 & -4 & -2 & 9 \\ -9 & 9 & 4 & -21 \\ 1 & -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} -3 & 21 & 2 & -26 & -5 & 3 \\ 3 & -21 & 1 & 14 & 38 & -2 \\ -3 & 21 & -3 & -6 & -60 & 1 \\ 2 & -14 & -1 & 16 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -7 & 0 & 6 & 9 & 0 \\ 0 & 0 & 1 & -4 & 11 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} -1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

Determine if Ax = b is consistent without doing any row operations.

Problem 3. Calculate PA = LU where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \\ 3 & -1 & 1 \end{bmatrix}$.

Problem 4. Consider the PA = LU factorization and the vector \boldsymbol{b} given by

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

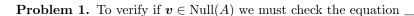
$$\boldsymbol{b} = \begin{bmatrix} 15 \\ 11 \\ -15 \\ 13 \end{bmatrix}$$

Solve Ax = b without doing any row reductions.

Math 218D: Week 5 Discussion

STUDY COPY

September 29, 2022



Problem 2. Show that
$$v = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 is in the null space of $A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \\ 0 & 1 & 2 \end{bmatrix}$

Problem 3. Suppose A is 5×9 and that $v \in \text{Null}(A)$. Then $v \in \mathbb{R}$ —.

Problem 4. Suppose that A has four columns related by the equation $Col_4 = 3 Col_1 + Col_2 - Col_3$. Find a nonzero vector $\mathbf{v} \in Null(A)$.

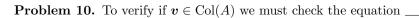
Problem 5. A scalar λ is an eigenvalue of A if

Problem 6. The *eigenspace* of A corresponding to an eigenvalue λ is $\mathcal{E}_A(\lambda) =$

Problem 7. An eigenvector $v \in \mathcal{E}_A(\lambda)$ satisfies the equation

Problem 8. Show that $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ -6 & 6 & -2 \end{bmatrix}$ and identify the eigenvalue.

Problem 9. Find all vectors in $\mathcal{E}_A(-3)$ where $A = \begin{bmatrix} -23 & 40 & -60 \\ -5 & 7 & -15 \\ 5 & -10 & 12 \end{bmatrix}$.



Problem 11. Determine if $\mathbf{v} = \begin{bmatrix} 6 \\ 12 \\ 2 \end{bmatrix}$ is in the column space of $A = \begin{bmatrix} 1 & -3 & 4 \\ 2 & -6 & 8 \\ -3 & 9 & -12 \end{bmatrix}$.

Problem 12. To verify if $v \in \operatorname{Span}\{v_1, \dots, v_k\}$ we must check $_$

Problem 13. Determine if $\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Span}\{\begin{bmatrix} 1 & -3 & -3 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & 4 & 3 \end{bmatrix}^{\mathsf{T}}\}.$

Math 218D: Week 6 Discussion

STUDY COPY

October 6, 2022

Problem 1. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \dots, v_n\}$ linearly dependent?

Problem 2. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \dots, v_n\}$ linearly independent?

Problem 3. Determine if $\{\begin{bmatrix} 1 & -3 & 1\end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -4 & 13 & -3\end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 5 & -17 & 3\end{bmatrix}^{\mathsf{T}}\}$ is independent.

Problem 4. Suppose that $v_1, v_2, v_3 \in \mathbb{R}^n$ and let A be an $m \times n$ matrix such that $\{Av_1, Av_2, Av_3\}$ is linearly independent. Show that $\{v_1, v_2, v_3\}$ is linearly independent.

Problem 5. The columns of a matrix A are independent if and only if ______.

Problem 6. Suppose that A is a 3×3 matrix satisfying the following three equations.

$$\left[\begin{array}{c|c}A\end{array}\right]\begin{bmatrix}1\\1\\1\\1\end{bmatrix}=\begin{bmatrix}1\\-2\\-1\end{bmatrix}\quad\mathrm{rref}\left[\begin{array}{c|c}A\end{array}\begin{array}{c|c}1\\1\\1\end{bmatrix}=\begin{bmatrix}1&0&1&0\\0&1&0&0\\0&0&0&1\end{array}\right]\quad\mathrm{rref}\left[\begin{array}{c|c}A^\mathsf{T}\end{array}\begin{array}{c|c}1\\1\\1\end{bmatrix}=\begin{bmatrix}1&0&1&-11\\0&1&1&-7\\0&0&0\end{array}\right]$$

Note that $\operatorname{rref}(A)$ and $\operatorname{rref}(A^{\intercal})$ can be inferred from the second and third equations above.

- (a) The vector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^\mathsf{T}$ belongs to exactly one of the four fundamental subspaces of A. Select this space.
 - The null space. The row space. The column space. The left null space.
- (b) The vector $\begin{bmatrix} 1 & -2 & -1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space.
 - \bigcirc The null space. \bigcirc The row space. \bigcirc The column space. \bigcirc The left null space.
- (c) Determine if $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\mathsf{T}} \in \text{Null}(A)$.

Problem 7. Suppose that A and B are $n \times n$ matrices and that $v \in \mathbb{R}^n$ satisfies $v \in \mathcal{E}_A(-2)$ and $v \in \mathcal{E}_B(5)$. Show that v is an eigenvector of $M = A^2 + AB - I_n$ and identify the corresponding eigenvalue.

Math 218D: Week 7 Discussion

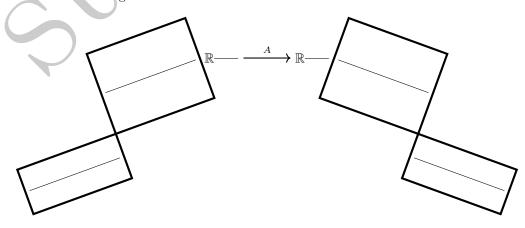
STUDY COPY

October 13, 2022

Problem 1. Consider the calculations

$$\operatorname{rref}\begin{bmatrix} 9 & 4 & 4 \\ -36 & -16 & -16 \\ 20 & 9 & 4 \\ -49 & -22 & -12 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 20 \\ 0 & 1 & -44 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \operatorname{rref}\begin{bmatrix} 9 & -36 & 20 & -49 \\ 4 & -16 & 9 & -22 \\ 4 & -16 & 4 & -12 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 0 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find the pivot solutions to Av = O. These vectors form a basis of ______.
- (b) Find the pivot solutions to $A^{\intercal}v = 0$. These vectors form a basis of ______.
- (c) Find the pivot columns of A. These vectors form a basis of _____
- (d) Find the nonzero rows of rref(A). These vectors form a basis of _____
- (e) The pivot columns of A^{\intercal} form a basis of _____.
- (f) The nonzero rows of $\operatorname{rref}(A^{\intercal})$ form a basis of ______
- (g) Fill in the blanks in the figure below.



$$E = \begin{bmatrix} 1 & -3 & -1 & 17 \\ -3 & 10 & 5 & -56 \\ 5 & -19 & -12 & 105 \\ -1 & 7 & 7 & -36 \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & -3 & 0 & -7 & 0 \\ 0 & 0 & 1 & 9 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

(b) Find a basis of $Col(A^{\intercal})$.

(c) Find a basis of $Null(A^{\intercal})$.

(d) Find a basis of Null(A).

(e) Find a basis of Col(A).

Math 218D: Week 8 Discussion

STUDY COPY

October 20, 2022

Problem 1. Suppose that A is a matrix satisfying

$$\operatorname{Col}(A^\intercal) = \operatorname{Span}\{ \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^\intercal, \begin{bmatrix} 0 & 3 & 2 & 4 \end{bmatrix}^\intercal \} \qquad \operatorname{Null}(A^\intercal) = \operatorname{Span}\{ \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^\intercal \}$$

$$Null(A^{\mathsf{T}}) = Span\{ \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^{\mathsf{T}} \}$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

- (b) Determine if $\mathbf{v} = \begin{bmatrix} 1 & 0 & 2 & -1 \end{bmatrix}^{\mathsf{T}}$ satisfies $A\mathbf{v} = \mathbf{O}$.
- (c) Determine if $\boldsymbol{b} = \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\mathsf{T}}$ makes the system $A\boldsymbol{x} = \boldsymbol{b}$ consistent.

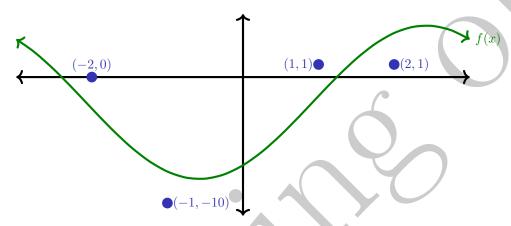
(d) Explain why $\text{Null}(A) \neq \text{Span}\{\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\intercal}, \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^{\intercal}\}.$

Problem 2. The *least squares problem* associated to Ax = b is

Problem 3. Suppose \hat{x} is a least squares approximate solution to Ax = b. Then $A\hat{x} = b$.

Problem 4. The *least squares error* is defined as

Problem 5. The figure below depicts the result of using the technique of least squares to fit a curve of the form $f(x) = c_0 + c_1 \cos(\pi x/3) + c_2 \sin(\pi x/3)$ to four data points.



Find the values of c_0 , c_1 , and c_2 and calculate the error in using f(x) to approximate this data.

Math 218D: Week 9 Discussion

STUDY COPY

October 27, 2022

Problem 1. Define the concept of an A = QR factorization.

Problem 2. A matrix M has orthonormal columns if and only if $M^{\intercal}M =$

Problem 3. Given A = QR, projection onto Col(A) is given by $P_{Col(A)} =$

Problem 4. Suppose A = QR where A has full column rank. Then the least squares problem $A^{\intercal}A\widehat{x} = A^{\intercal}b$ reduces to

Problem 5. Suppose that A is $m \times n$ with orthonormal columns and that $v \in \mathbb{R}^n$.

(a) Show that $||A\mathbf{v}|| = ||\mathbf{v}||$.

(b) Show that $n \leq m$.

Problem 6. Calculate $\begin{bmatrix} 1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52 \end{bmatrix}.$

Problem 7. Consider the following matrix factorization

$$\begin{bmatrix} P \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & -1 & 6 \\ -1 & -4 & 1 & -1 & -4 \\ -2 & -10 & 0 & 2 & -1 \\ 3 & -1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1/4 & 1 & 0 & 0 & 0 \\ -1/8 & 2^9/74 & 1 & 0 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 3/8 & 1^7/74 & -8/19 & -12/19 & 1 \end{bmatrix} \begin{bmatrix} 8 & 3 & 1 & -2 & -3 \\ 0 & -3^{7/4} & 1/4 & 3/2 & -7/4 \\ 0 & 0 & 3^8/37 & -68/37 & -2^{73}/74 \\ 0 & 0 & 0 & -1 & 5/2 \\ 0 & 0 & 0 & 0 & 97/38 \end{bmatrix}$$

Calculate det(A).

Problem 8. For $n \times n$ matrices A and B, $det(A^{\mathsf{T}}) = \underline{\hspace{1cm}}$ and $det(AB) = \underline{\hspace{1cm}}$.

Problem 9. If possible, find 3×3 matrices A and B satisfying $\det(A + B) \neq \det(A) + \det(B)$. If this is not possible, then explain why.

Problem 10. The (i,j) minor of A is $M_{ij} =$ _____ and the (i,j) cofactor is $C_{ij} =$ _____

Math 218D: Week 10 Discussion

STUDY COPY

November 3, 2022

Problem 1. Suppose that $\det(A) = 35$ and that each (i, j) minor of A is the (i, j) entry of $M = \begin{bmatrix} -45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ 45 & 16 & 34 & -5 \\ -10 & -2 & -13 & 5 \end{bmatrix}$.

(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.

(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} 0 & 7 & 0 & 0 \end{bmatrix}^\mathsf{T}$

Problem 3. The reciprocal of z = 7 - 9i is $1/z = ___ + ___i$.

Problem 4. Consider the vectors $\mathbf{v} = \begin{bmatrix} 1+i & 5 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{w} = \begin{bmatrix} 1-3i & 2+i \end{bmatrix}^{\mathsf{T}}$ and the matrix $A = \begin{bmatrix} 2 & 1+i & -1 \\ 0 & 1 & 3-2i \end{bmatrix}$.

(a) Calculate $\|\boldsymbol{v}\|$.

(b) Calculate $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$.

(c) Calculate A^*v .

Problem 5. We call a matrix A Hermitian if ______. We call A unitary if ______.

Problem 6. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 7. Suppose that U is $n \times n$ unitary and that $v, w \in \mathbb{C}^n$. Show that $\langle Uv, Uw \rangle = \langle v, w \rangle$.

Math 218D: Week 11 Discussion

STUDY COPY

November 10, 2022

Problem 1. The polynomial

$$f(t) = t^4 - 2t^3 - t^2 + t - 14$$

has four distinct roots r_1 , r_2 , r_3 , and r_4 .

- (a) $r_1 + r_2 + r_3 + r_4 = \underline{}$ and $r_1 r_2 r_3 r_4 = \underline{}$ (b) Calculate $(1 r_1)(1 r_2)(1 r_3)(1 r_4)$.

Problem 2. Let r_1 and r_2 be the roots of

$$f(t) = -9t^2 - 2t - 1$$

Calculate $r_1^2 + r_2^2$.

Hint. Consider $(r_1 + r_2)^2$

Problem 3. Consider the equation

$$\begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} = \begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} \begin{bmatrix} -1 & * & -7 & -1 \\ 0 & 0 & * & * \\ -1 & 6 & -1 & -6 \\ * & * & 2 & -1 \end{bmatrix} \begin{bmatrix} 11 & 10 & 0 & 3 \\ * & -7 & * & -3 \\ -10 & * & * & -3 \\ 3 & 3 & * & * \end{bmatrix}$$

where the entries marked * are unknown. Find the missing entry of A.

Problem 4. Suppose that A has eigenspaces given by

$$\mathcal{E}_A(7) = \operatorname{Span}\left\{\begin{bmatrix}1 & 3 & 0\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(1) = \operatorname{Span}\left\{\begin{bmatrix}-2 & -5 & -5\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(-1) = \operatorname{Span}\left\{\begin{bmatrix}-3 & -7 & -9\end{bmatrix}^{\mathsf{T}}\right\}$$
Calculate $A^{2021}\boldsymbol{v}$ for $\boldsymbol{v} = \begin{bmatrix}0 & -1 & 3\end{bmatrix}^{\mathsf{T}}$.

Math 218D: Week 12 Discussion

STUDY COPY

November 17, 2022

Problem 1. Consider the factorization

$$\begin{bmatrix} -233 & 693 \\ -84 & 250 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 19 \end{bmatrix} \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix}^{-1}$$

- $(a) \det(A) = \underline{\hspace{1cm}}$
- (b) Find the solution u(t) to the initial value problem du/dt = Au with $u(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$.

(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to ${}^{d\boldsymbol{u}}/{}_{dt} = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \boldsymbol{v}$ satisfies $\lim_{t \to \infty} \boldsymbol{u}(t) = \boldsymbol{O}$. Find a basis of V.

Problem 2. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 3. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$\mathcal{E}_S(-3) = \operatorname{Span}\{\begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & -3 & -2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(5) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Spa$$

(a) Find a basis of $\mathcal{E}_S(9)$.

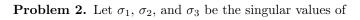
(b) Find a spectral factorization of S.

Math 218D: Week 14 Discussion

STUDY COPY

December 1, 2022

Problem 1. What is a singular value decomposition?



$$A = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 2 & -2 & -1 & 0 \\ -3 & -1 & 0 & -1 \end{bmatrix}$$

Calculate $\sigma_1^2 + \sigma_2^2 + \sigma_3^2$.

Problem 3. If possible, construct a 2×2 matrix A with characteristic polynomial $\chi_A(t) = (t-1)^2$ and with exactly one singular value given by $\sigma_1 = 1$. If this is not possible, then explain why.

Problem 5. Suppose A is 3×3 with exactly two singular values $\sigma_1 = \sqrt{19}$ and $\sigma_2 = 3$. If possible, calculate $\det(A)$. If not, then examplain why.

Problem 6. Suppose that $A = U\Sigma V^*$ is a singular value decomposition and define $A^+ = V\Sigma^{-1}U^*$. Show that A^+b is a least squares approximate solution to Ax = b.

Math 218D: Week 15 Discussion

STUDY COPY

December 8, 2022

Problem 1. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be the function defined by

$$\boldsymbol{f}(x,y) = \begin{bmatrix} x^2 + \sin(x) \\ x(y-2) \\ -3xy + y^2 \end{bmatrix}$$

Use the local linearization of f at the point P = (0,1) to approximate f(1/2,1/2).

Problem 2. Calculate
$$S = LDL^{\intercal}$$
 where $S = \begin{bmatrix} 2 & 12 & 10 \\ 12 & 67 & 105 \\ 10 & 105 & -351 \end{bmatrix}$

Problem 3. Suppose that factoring $S = LDL^{\dagger}$ allows us to write the quadratic form $q(x) = \langle x, Sx \rangle$ as

$$q(\mathbf{x}) = 10(x_1 - 5x_2 + 2x_3)^2 - 11(x_2 - 6x_3)^2 - 5x_3^2$$

Find L and D and determine the definitess of S.

Problem 4. Determine the definiteness of
$$S = \begin{bmatrix} 0 & 4 & -6 & 8 & 16 \\ 4 & -650 & 3 & 1941 & -1 \\ -6 & 3 & 8 & -144 & 16 \\ 8 & 1941 & -144 & 2 & 18 \\ 16 & -1 & 16 & 18 & 52 \end{bmatrix}$$
.

Problem 5. Find
$$R$$
 the Cholesky factorization $S = R^{\intercal}R$ of $S = \begin{bmatrix} 9 & 15 & -6 \\ 15 & 29 & 8 \\ -6 & 8 & 206 \end{bmatrix}$

Math 218D: Week 9 Discussion

STUDY COPY

October 27, 2022

Problem 1. Define the concept of an A = QR factorization.

Problem 2. A matrix M has orthonormal columns if and only if $M^{\intercal}M =$

Problem 3. Given A = QR, projection onto Col(A) is given by $P_{Col(A)} =$

Problem 4. Suppose A = QR where A has full column rank. Then the least squares problem $A^{\intercal}A\widehat{x} = A^{\intercal}b$ reduces to

Problem 5. Suppose that A is $m \times n$ with orthonormal columns and that $v \in \mathbb{R}^n$.

(a) Show that $||A\mathbf{v}|| = ||\mathbf{v}||$.

(b) Show that $n \leq m$.

Problem 6. Calculate $\begin{bmatrix} 1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52 \end{bmatrix}.$

Problem 7. Consider the following matrix factorization

$$\begin{bmatrix} P \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & -1 & 6 \\ -1 & -4 & 1 & -1 & -4 \\ -2 & -10 & 0 & 2 & -1 \\ 3 & -1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1/4 & 1 & 0 & 0 & 0 \\ -1/8 & 2^9/74 & 1 & 0 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 3/8 & 1^7/74 & -8/19 & -12/19 & 1 \end{bmatrix} \begin{bmatrix} 8 & 3 & 1 & -2 & -3 \\ 0 & -3^{7/4} & 1/4 & 3/2 & -7/4 \\ 0 & 0 & 3^8/37 & -68/37 & -2^{73}/74 \\ 0 & 0 & 0 & -1 & 5/2 \\ 0 & 0 & 0 & 0 & 97/38 \end{bmatrix}$$

Calculate det(A).

Problem 8. For $n \times n$ matrices A and B, $det(A^{\mathsf{T}}) = \underline{\hspace{1cm}}$ and $det(AB) = \underline{\hspace{1cm}}$.

Problem 9. If possible, find 3×3 matrices A and B satisfying $\det(A + B) \neq \det(A) + \det(B)$. If this is not possible, then explain why.

Problem 10. The (i,j) minor of A is $M_{ij} =$ _____ and the (i,j) cofactor is $C_{ij} =$ _____

Math 218D: Week 10 Discussion

STUDY COPY

November 3, 2022

Problem 1. Suppose that $\det(A) = 35$ and that each (i, j) minor of A is the (i, j) entry of $M = \begin{bmatrix} -45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ 45 & 16 & 34 & -5 \\ -10 & -2 & -13 & 5 \end{bmatrix}$.

(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.

(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} 0 & 7 & 0 & 0 \end{bmatrix}^\mathsf{T}$

Problem 3. The reciprocal of z = 7 - 9i is $1/z = ___ + ___i$.

Problem 4. Consider the vectors $\mathbf{v} = \begin{bmatrix} 1+i & 5 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{w} = \begin{bmatrix} 1-3i & 2+i \end{bmatrix}^{\mathsf{T}}$ and the matrix $A = \begin{bmatrix} 2 & 1+i & -1 \\ 0 & 1 & 3-2i \end{bmatrix}$.

(a) Calculate $\|\boldsymbol{v}\|$.

(b) Calculate $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$.

(c) Calculate A^*v .

Problem 5. We call a matrix A Hermitian if ______. We call A unitary if ______.

Problem 6. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 7. Suppose that U is $n \times n$ unitary and that $v, w \in \mathbb{C}^n$. Show that $\langle Uv, Uw \rangle = \langle v, w \rangle$.

Math 218D: Week 11 Discussion

STUDY COPY

November 10, 2022

Problem 1. The polynomial

$$f(t) = t^4 - 2t^3 - t^2 + t - 14$$

has four distinct roots r_1 , r_2 , r_3 , and r_4 .

- (a) $r_1 + r_2 + r_3 + r_4 = \underline{}$ and $r_1 r_2 r_3 r_4 = \underline{}$ (b) Calculate $(1 r_1)(1 r_2)(1 r_3)(1 r_4)$.

Problem 2. Let r_1 and r_2 be the roots of

$$f(t) = -9t^2 - 2t - 1$$

Calculate $r_1^2 + r_2^2$.

Hint. Consider $(r_1 + r_2)^2$

Problem 3. Consider the equation

$$\begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} = \begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} \begin{bmatrix} -1 & * & -7 & -1 \\ 0 & 0 & * & * \\ -1 & 6 & -1 & -6 \\ * & * & 2 & -1 \end{bmatrix} \begin{bmatrix} 11 & 10 & 0 & 3 \\ * & -7 & * & -3 \\ -10 & * & * & -3 \\ 3 & 3 & * & * \end{bmatrix}$$

where the entries marked * are unknown. Find the missing entry of A.

Problem 4. Suppose that A has eigenspaces given by

$$\mathcal{E}_A(7) = \operatorname{Span}\left\{\begin{bmatrix}1 & 3 & 0\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(1) = \operatorname{Span}\left\{\begin{bmatrix}-2 & -5 & -5\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(-1) = \operatorname{Span}\left\{\begin{bmatrix}-3 & -7 & -9\end{bmatrix}^{\mathsf{T}}\right\}$$
Calculate $A^{2021}\boldsymbol{v}$ for $\boldsymbol{v} = \begin{bmatrix}0 & -1 & 3\end{bmatrix}^{\mathsf{T}}$.

Math 218D: Week 12 Discussion

STUDY COPY

November 17, 2022

Problem 1. Consider the factorization

$$\begin{bmatrix} -233 & 693 \\ -84 & 250 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 19 \end{bmatrix} \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix}^{-1}$$

- $(a) \det(A) = \underline{\hspace{1cm}}$
- (b) Find the solution u(t) to the initial value problem du/dt = Au with $u(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$.

(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to ${}^{d\boldsymbol{u}}/{}_{dt} = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \boldsymbol{v}$ satisfies $\lim_{t \to \infty} \boldsymbol{u}(t) = \boldsymbol{O}$. Find a basis of V.

Problem 2. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 3. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$\mathcal{E}_S(-3) = \operatorname{Span}\{\begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & -3 & -2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(5) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = \operatorname{Spa$$

(a) Find a basis of $\mathcal{E}_S(9)$.

(b) Find a spectral factorization of S.