Math 218D: Week 1 Discussion

Study Copy

September 1, 2022

Problem 1. Fill in the blanks below.

Problem 2. Fill in the blanks below, assuming that S is *symmetric*.

$$S = \begin{bmatrix} 5 & -4 & \dots & \dots \\ & 19 & \dots & -1 \\ 11 & 2 & 8 & 3 \\ 9 & \dots & & -10 \end{bmatrix}$$
 trace(S) = _____

Problem 3. By definition, a matrix S is symmetric if .

Problem 4. Suppose that A is $n \times n$ and let $S = A + A^{\intercal}$. Prove that S is symmetric. *Hint.* This proof can be quickly accomplished by filling in the blanks below.

Problem 5. Consider the matrix *R* given by

$$R = \begin{bmatrix} 1 & -3 & 0 & -9 & 5 \\ 0 & 0 & 1 & 14 & 9 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{Col}_4(R) = \underline{\qquad} \operatorname{Col}_1(R) + \underline{\qquad} \operatorname{Col}_3(R)$$

- (a) Fill in the blanks above to express the fourth column of R as a linear combination of the first and third columns of R.
- (b) Can the fifth column of R be expressed as a linear combination of the first and third columns of R? Explain why or why not.

Problem 6. We write $\mathbb{R}^9 \xrightarrow{A} \mathbb{R}^{22}$ to indicate that A is a _____ × ____ matrix.

Problem 7. Suppose $\mathbb{R}^{13} \xrightarrow{M^{\intercal}} \mathbb{R}^{37}$. Then *M* is a _____ × ____ matrix.

Problem 8. Fill in the blanks in the two equations below.

Problem 9. Fill in the blanks in each equation below.

Problem 10. Suppose that A has four columns. Fill in the blanks in the equation on the right to validate the equation on the left.

$$\operatorname{Col}_{1} + 3 \operatorname{Col}_{2} - 9 \operatorname{Col}_{3} = 6 \operatorname{Col}_{4} \qquad \left[\begin{array}{c} A \end{array} \right] = \mathbf{O}$$

Problem 11. Find the missing entries in $A = \begin{bmatrix} * & 2 & -1 \\ -12 & -4 & 2 \\ * & 10 & -5 \\ * & 8 & -4 \end{bmatrix}$ assuming A has rank one.

Problem 12. We say that \boldsymbol{v} is an *eigenvector* of A with *corresponding eigenvalue* λ if $A\boldsymbol{v} =$ _____ **Problem 13.** Suppose that A is $n \times n$ and that $\boldsymbol{v} \in \mathcal{E}_A(\lambda)$. Calculate $(\lambda \cdot I_n - A)\boldsymbol{v}$.

Math 218D: Week 2 Discussion

Study Copy

September 8, 2022

Problem 1. $\langle \begin{bmatrix} 1 & -3 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 2 & 1 & 5 & 0 \end{bmatrix}^{\mathsf{T}} \rangle =$ _____

Problem 2. Which of the following vectors is *orthogonal* to $\boldsymbol{v} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$? $\bigcirc \boldsymbol{w} = \begin{bmatrix} 3 & -5 & 2 & 1 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \boldsymbol{x} = \begin{bmatrix} 9 & 2 & 3 & -6 & -8 \end{bmatrix}^{\mathsf{T}} \bigcirc \boldsymbol{y} = \begin{bmatrix} -1 & -1 & 9 & -10 & 3 \end{bmatrix}^{\mathsf{T}}$ **Problem 3.** The length of \boldsymbol{v} can be calculated with an inner product using the formula $\|\boldsymbol{v}\| =$

Froblem 5. The length of v can be calculated with an inner product using the formula ||v|| =

Problem 4. The inner product can be interpreted geometrically with the formula $\langle v, w \rangle =$

Problem 5. If we view $v, w \in \mathbb{R}^n$ as $n \times 1$ matrices, then $\langle v, w \rangle$ can be calculated using matrix multiplication with the formula $\langle v, w \rangle =$

Problem 6. The adjoint formula for inner products states that $\langle Av, w \rangle =$

Problem 7. Suppose that A and B are matrices satisfying $A^{\intercal}B = I_n$ and that \boldsymbol{v} and \boldsymbol{w} vectors making the following diagrams accurate.

Calculate $\langle B\boldsymbol{v} - \boldsymbol{3}\,\boldsymbol{w}, \boldsymbol{2}\,\boldsymbol{A}\boldsymbol{v} - \boldsymbol{A}\boldsymbol{w} \rangle$.

Problem 8. One of the following calculations is possible and the other is not. Carry out the possible calculation.

$$\begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 1 \\ 3 & -3 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 5 & -1 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 & 3 \\ 1 & 1 & -3 \end{bmatrix} = \underline{\qquad}$$

Problem 9. Fill in the blanks in each of the following two equations.

Problem 10. Suppose that A and B are 2022×2022 . Prove that $S = B^{\intercal}A + A^{\intercal}B$ is symmetric.

Problem 11. The last column of a matrix A is $\begin{bmatrix} 0 & 3 & 4 \end{bmatrix}^{\mathsf{T}}$ and the Gramian of A is

- (a) Fill in the missing entries of G and fill in the formula used to calculate G.
- (b) The number of rows of A is _____ and the number of columns of A is _____.
- (c) Which (if any) of the columns of A is orthogonal to the third column of A?

Math 218D: Week 3 Discussion

Study Copy

September 15, 2022

Problem 1. Consider the system of equations given by

-27 0

Use the Gauß-Jordan algorithm to find the general solution to this system.

	3	-6	12	0	-9		
D \mathbf{D} D	-7	14	-28	-5	26		
Problem 3. Use the Gaub-Jordan algorithm to calculate $\operatorname{rref}(A)$ where A	= 5	-12	12	2	-13	•	
	2	-3	12	-3	-5		

~

Math 218D: Week 4 Discussion

Study Copy

September 22, 2022

3

5

4

Problem 1. Use the Gauß-Jordan algorithm to calculate EA = R where $A = \begin{bmatrix} 1 & -5 & 0 \\ 0 & 0 & 5 \\ -5 & 25 & -11 \end{bmatrix}$

Problem 2. Consider the EA = R factorization and the vector **b** given by

	E					Α						R				
$\left[-6\right]$	5 2 -	-13]	$\left[-3\right]$	21	2	-26	-5	3	[1	-7	0	6	9	0]		[-1]
4	-4 -2	9	3	-21	1	14	38	-2	(0	1	-4	11	0	,	0
-9	9 4 -	-21	-3	21	-3	-6	-60	1	= (0	0	0	0	1	b =	2
1	-2 -1	3	2	-14	-1	16	7	-2		0	0	0	0	0		1
			L .						L .							

Determine if Ax = b is consistent without doing any row operations.

Problem 3. Calculate PA = LU where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \\ 3 & -1 & 1 \end{bmatrix}$.

Problem 4. Consider the PA = LU factorization and the vector **b** given by

	P		A				L				U			
Γ1	0 0 0	[1	-1	-1]		[1	0	0	0]	[1	$^{-1}$	-1]		[15]
0	$1 \ 0 \ 0$	1	0	0		1	1	0	0	0	1	1		11
0	$0 \ 0 \ 1$	-1	1	1	=	3	4	1	0	0	0	2	b =	-15
0	$0 \ 1 \ 0$	3	1	3		-1	0	0	1	0	0	0		13

Solve $A\mathbf{x} = \mathbf{b}$ without doing any row reductions.