Math 218D: Week 5 Discussion

Study Copy

September 29, 2022

Problem 1. To verify if $v \in Null(A)$ we must check the equation

Problem 2. Show that
$$\boldsymbol{v} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 is in the null space of $A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \\ 0 & 1 & 2 \end{bmatrix}$.

Problem 3. Suppose A is 5×9 and that $v \in \text{Null}(A)$. Then $v \in \mathbb{R}$ —

Problem 4. Suppose that A has four columns related by the equation $\operatorname{Col}_4 = 3 \operatorname{Col}_1 + \operatorname{Col}_2 - \operatorname{Col}_3$. Find a nonzero vector $\boldsymbol{v} \in \operatorname{Null}(A)$.

Problem 5. A scalar λ is an *eigenvalue* of A if

Problem 6. The *eigenspace* of A corresponding to an eigenvalue λ is $\mathcal{E}_A(\lambda) =$

Problem 7. An eigenvector $\boldsymbol{v} \in \mathcal{E}_A(\lambda)$ satisfies the equation

Problem 8. Show that $\boldsymbol{v} = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 10 & -6 & 6\\ 6 & -2 & 6\\ -6 & 6 & -2 \end{bmatrix}$ and identify the eigenvalue.

Problem 9. Find all vectors in $\mathcal{E}_A(-3)$ where $A = \begin{bmatrix} -23 & 40 & -60 \\ -5 & 7 & -15 \\ 5 & -10 & 12 \end{bmatrix}$.

Problem 10. To verify if $v \in Col(A)$ we must check the equation _

Problem 11. Determine if $\boldsymbol{v} = \begin{bmatrix} 6\\12\\2 \end{bmatrix}$ is in the column space of $A = \begin{bmatrix} 1 & -3 & 4\\2 & -6 & 8\\-3 & 9 & -12 \end{bmatrix}$.

Problem 12. To verify if $\boldsymbol{v} \in \text{Span}\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ we must check ______ **Problem 13.** Determine if $\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \in \text{Span}\{\begin{bmatrix} 1 & -3 & -3 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & 4 & 3 \end{bmatrix}^{\mathsf{T}}\}.$

Math 218D: Week 6 Discussion

STUDY COPY

October 6, 2022

Problem 1. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \ldots, v_n\}$ linearly dependent?

Problem 2. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \ldots, v_n\}$ linearly independent?

Problem 3. Determine if $\{\begin{bmatrix} 1 & -3 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -4 & 13 & -3 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 5 & -17 & 3 \end{bmatrix}^{\mathsf{T}}\}$ is independent.

Problem 4. Suppose that $v_1, v_2, v_3 \in \mathbb{R}^n$ and let A be an $m \times n$ matrix such that $\{Av_1, Av_2, Av_3\}$ is linearly independent. Show that $\{v_1, v_2, v_3\}$ is linearly independent.

Problem 5. The columns of a matrix A are independent if and only if ______

Problem 6. Suppose that A is a 3×3 matrix satisfying the following three equations.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \quad \operatorname{rref} \begin{bmatrix} A & \begin{vmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & | \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \quad \operatorname{rref} \begin{bmatrix} A^{\mathsf{T}} & \begin{vmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & | & -11 \\ 0 & 1 & 1 & | & -7 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Note that $\operatorname{rref}(A)$ and $\operatorname{rref}(A^{\intercal})$ can be inferred from the second and third equations above.

- (a) The vector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space. \bigcirc The null space. \bigcirc The row space. \bigcirc The column space. \bigcirc The left null space.
- (b) The vector $\begin{bmatrix} 1 & -2 & -1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space.

○ The null space. ○ The row space. ○ The column space. ○ The left null space. (c) Determine if $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\intercal} \in \text{Null}(A)$.

Problem 7. Suppose that A and B are $n \times n$ matrices and that $v \in \mathbb{R}^n$ satisfies $v \in \mathcal{E}_A(-2)$ and $v \in \mathcal{E}_B(5)$. Show that v is an eigenvector of $M = A^2 + AB - I_n$ and identify the corresponding eigenvalue.

Math 218D: Week 7 Discussion

STUDY COPY

October 13, 2022

Problem 1. Consider the calculations

		A							4
rref	9	4	4	$\begin{bmatrix} 4 \\ 16 \\ 4 \\ 12 \end{bmatrix} =$	[1	0	20]	$\begin{bmatrix} 0 & -36 & 20 & -40 \end{bmatrix} \begin{bmatrix} 1 & 4 & 0 & -40 \end{bmatrix}$	1-
	-36	-16	-16		0	1	-44	$\operatorname{rrof} \begin{bmatrix} 3 & -30 & 20 & -49 \\ 4 & -16 & 0 & -22 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 0 & -20 \\ 0 & 0 & 1 & -40 \end{bmatrix}$	1 0
	20	9	4		0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 0
	-49	-22	-12		0	0	0		<u> </u>

(a) Find the pivot solutions to Av = O. These vectors form a basis of

(b) Find the pivot solutions to $A^{\intercal} v = O$. These vectors form a basis of ______

(c) Find the pivot columns of A. These vectors form a basis of _____

(d) Find the nonzero rows of rref(A). These vectors form a basis of _____

(e) The pivot columns of A^{\intercal} form a basis of _____.

(f) The nonzero rows of $\operatorname{rref}(A^{\intercal})$ form a basis of _____

(g) Fill in the blanks in the figure below.

Problem 2. Suppose EA = R where

$$E = \begin{bmatrix} 1 & -3 & -1 & 17 \\ -3 & 10 & 5 & -56 \\ 5 & -19 & -12 & 105 \\ -1 & 7 & 7 & -36 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & -3 & 0 & -7 & 0 \\ 0 & 0 & 1 & 9 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

(b) Find a basis of $\operatorname{Col}(A^{\intercal})$.

(c) Find a basis of $\text{Null}(A^{\intercal})$.

(d) Find a basis of Null(A).

(e) Find a basis of $\operatorname{Col}(A)$.

Math 218D: Week 8 Discussion

Study Copy

October 20, 2022

Problem 1. Suppose that *A* is a matrix satisfying

 $\operatorname{Col}(A^{\mathsf{T}}) = \operatorname{Span}\{\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 & 3 & 2 & 4 \end{bmatrix}^{\mathsf{T}}\} \qquad \operatorname{Null}(A^{\mathsf{T}}) = \operatorname{Span}\{\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^{\mathsf{T}}\}$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

- (b) Determine if $\boldsymbol{v} = \begin{bmatrix} 1 & 0 & 2 & -1 \end{bmatrix}^{\mathsf{T}}$ satisfies $A\boldsymbol{v} = \boldsymbol{O}$.
- (c) Determine if $\boldsymbol{b} = \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\mathsf{T}}$ makes the system $A\boldsymbol{x} = \boldsymbol{b}$ consistent.

(d) Explain why Null(A) \neq Span{ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ }.

Problem 2. The *least squares problem* associated to Ax = b is

Problem 3. Suppose \hat{x} is a least squares approximate solution to Ax = b. Then $A\hat{x} =$

Problem 4. The *least squares error* is defined as

Problem 5. The figure below depicts the result of using the technique of least squares to fit a curve of the form $f(x) = c_0 + c_1 \cos(\pi x/3) + c_2 \sin(\pi x/3)$ to four data points.

Find the values of c_0 , c_1 , and c_2 and calculate the error in using f(x) to approximate this data.