Math 218D: Week 9 Discussion

STUDY COPY

October 27, 2022

Problem 1. Define the concept of an A = QR factorization.

Problem 2. A matrix M has orthonormal columns if and only if $M^{\intercal}M =$

Problem 3. Given A = QR, projection onto Col(A) is given by $P_{Col(A)} =$

Problem 4. Suppose A = QR where A has full column rank. Then the least squares problem $A^{\intercal}A\widehat{x} = A^{\intercal}b$ reduces to

Problem 5. Suppose that A is $m \times n$ with orthonormal columns and that $v \in \mathbb{R}^n$.

(a) Show that $||A\mathbf{v}|| = ||\mathbf{v}||$.

(b) Show that $n \leq m$.

Problem 6. Calculate $\begin{bmatrix} 1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52 \end{bmatrix}.$

$$\begin{bmatrix} P & A & 1 & 6 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & 1 & 6 \\ -1 & -4 & 1 & -1 & -4 \\ -2 & -10 & 0 & 2 & -1 \\ 3 & -1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & L & U & 0 & 0 & 0 \\ -1/4 & 1 & 0 & 0 & 0 & 0 \\ -1/8 & 29/74 & 1 & 0 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 3/8 & 17/74 & -8/19 & -12/19 & 1 \end{bmatrix} \begin{bmatrix} 8 & 3 & 1 & -2 & -3 \\ 0 & -37/4 & 1/4 & 3/2 & -7/4 \\ 0 & 0 & 3/8/37 & -273/74 \\ 0 & 0 & 0 & -1 & 5/2 \\ 0 & 0 & 0 & 0 & 97/38 \end{bmatrix}$$

Calculate det(A).

Problem 8. For $n \times n$ matrices A and B, $\det(A^{\mathsf{T}}) = \underline{\hspace{1cm}}$ and $\det(AB) = \underline{\hspace{1cm}}$.

Problem 9. If possible, find 3×3 matrices A and B satisfying $\det(A + B) \neq \det(A) + \det(B)$. If this is not possible, then explain why.

Problem 10. The (i,j) minor of A is $M_{ij} =$ _____ and the (i,j) cofactor is $C_{ij} =$ _____

Math 218D: Week 10 Discussion

STUDY COPY

November 3, 2022

Problem 1. Suppose that $\det(A) = 35$ and that each (i, j) minor of A is the (i, j) entry of $M = \begin{bmatrix} -45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ 45 & 16 & 34 & -5 \\ -10 & -2 & -13 & 5 \end{bmatrix}$.

(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.

(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} 0 & 7 & 0 & 0 \end{bmatrix}^\mathsf{T}$

Problem 2. Suppose that λ is an eigenvalue of an $n \times n$ matrix A. Then $\det(\lambda \cdot I_n - A) = \underline{\hspace{1cm}}$.

Problem 3. The reciprocal of z = 7 - 9i is $1/z = ____ + ___i$.

Problem 4. Consider the vectors $\mathbf{v} = \begin{bmatrix} 1+i & 5 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{w} = \begin{bmatrix} 1-3i & 2+i \end{bmatrix}^{\mathsf{T}}$ and the matrix $A = \begin{bmatrix} 2 & 1+i & -1 \\ 0 & 1 & 3-2i \end{bmatrix}$.

(a) Calculate $\|\boldsymbol{v}\|$.

(b) Calculate $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$.

(c) Calculate A^*v .

Problem 5. We call a matrix A Hermitian if ______. We call A unitary if ______.

Problem 6. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 7. Suppose that U is $n \times n$ unitary and that $v, w \in \mathbb{C}^n$. Show that $\langle Uv, Uw \rangle = \langle v, w \rangle$.

Math 218D: Week 11 Discussion

STUDY COPY

November 10, 2022

Problem 1. The polynomial

$$f(t) = t^4 - 2t^3 - t^2 + t - 14$$

has four distinct roots r_1 , r_2 , r_3 , and r_4 .

- (a) $r_1 + r_2 + r_3 + r_4 = \underline{}$ and $r_1 r_2 r_3 r_4 = \underline{}$ (b) Calculate $(1 r_1)(1 r_2)(1 r_3)(1 r_4)$.

Problem 2. Let r_1 and r_2 be the roots of

$$f(t) = -9t^2 - 2t - 1$$

Calculate $r_1^2 + r_2^2$.

Hint. Consider $(r_1 + r_2)^2$

Problem 3. Consider the equation

$$\begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} = \begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} \begin{bmatrix} -1 & * & -7 & -1 \\ 0 & 0 & * & * \\ -1 & 6 & -1 & -6 \\ * & * & 2 & -1 \end{bmatrix} \begin{bmatrix} 11 & 10 & 0 & 3 \\ * & -7 & * & -3 \\ -10 & * & * & -3 \\ 3 & 3 & * & * \end{bmatrix}$$

where the entries marked * are unknown. Find the missing entry of A.

Problem 4. Suppose that A has eigenspaces given by

$$\mathcal{E}_A(7) = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}^{\mathsf{T}} \right\} \quad \mathcal{E}_A(1) = \operatorname{Span} \left\{ \begin{bmatrix} -2 & -5 & -5 \end{bmatrix}^{\mathsf{T}} \right\} \quad \mathcal{E}_A(-1) = \operatorname{Span} \left\{ \begin{bmatrix} -3 & -7 & -9 \end{bmatrix}^{\mathsf{T}} \right\}$$
Calculate $A^{2021} \boldsymbol{v}$ for $\boldsymbol{v} = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix}^{\mathsf{T}}$.

Math 218D: Week 12 Discussion

STUDY COPY

November 17, 2022

Problem 1. Consider the factorization

$$\begin{bmatrix} -233 & 693 \\ -84 & 250 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 19 \end{bmatrix} \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix}^{-1}$$

- $(a) \det(A) = \underline{\hspace{1cm}}$
- (b) Find the solution u(t) to the initial value problem du/dt = Au with $u(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$.

(c) Let V be the vector space consisting of all vectors \boldsymbol{v} such that the solution $\boldsymbol{u}(t)$ to ${}^{d\boldsymbol{u}}/{}_{dt} = A\boldsymbol{u}$ with $\boldsymbol{u}(0) = \boldsymbol{v}$ satisfies $\lim_{t \to \infty} \boldsymbol{u}(t) = \boldsymbol{O}$. Find a basis of V.

Problem 2. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 3. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$\mathcal{E}_S(-3) = \operatorname{Span}\{\begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & -3 & -2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(5) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = ?$$

(a) Find a basis of $\mathcal{E}_S(9)$.

(b) Find a spectral factorization of S.