DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam I

Name:

NetID:

Solutions

 $\label{eq:Interm} I \ have \ adhered \ to \ the \ Duke \ Community \ Standard \ in \ completing \ this \ exam.$

Signature:

September 30, 2022

- There are 100 points and 6 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

(5 pts) **Problem 1.** The matrix $\begin{bmatrix} 3 & 6 & -6 & 15 & 18 \\ -4 & -8 & 8 & -20 & -24 \\ 2 & 4 & -4 & * & 12 \\ 9 & 18 & -18 & 45 & 54 \end{bmatrix}$ has rank one if the entry marked * equals <u>10</u>.

Problem 2. Suppose that the first column of a matrix A is a vector with length three and that A satisfies each of the following equations.

$$\begin{bmatrix} & A \\ & & \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} & A \\ & \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} & A \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

(5 pts) (a) If we write $\mathbb{R}^a \xrightarrow{A} \mathbb{R}^b$, then $a = \underline{4}$ and $b = \underline{3}$.

(5 pts) (b) Calculate $\begin{bmatrix} & A \\ & A \end{bmatrix} \begin{bmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Solution. The columns of the second matrix come from the vectors multiplied in by A in the second, first, and third equation respectively. This means that

A		0 0 1		1 0 0	=	$\begin{bmatrix} 7\\ -5\\ 2 \end{bmatrix}$	0 0 0	$\begin{array}{c} 0 \\ 1 \\ -1 \end{array}$
L	7	0	0	1			0	-1]

(5 pts) (c) Could A be the incidence matrix of a directed graph? Briefly explain why or why not.

Solution. The middle equation is telling us that the third column of A is $\begin{bmatrix} 7 & -5 & 2 \end{bmatrix}^{\mathsf{T}}$, but the only valid entries in an incidence matrix are -1, 0, and 1. This means that A cannot be the incidence matrix of a digraph.

(5 pts) (d) Calculate the inner product of the first two columns of A. Hint. The first equation gives a relationship between the first two columns of A.

Solution. The first equation is telling us that $-2 \cdot \operatorname{Col}_1 + \operatorname{Col}_2 = \mathbf{O}$, which gives $\operatorname{Col}_2 = 2 \cdot \operatorname{Col}_1$. We are told that $\|Col_1\| = 3$, so

 $\langle \operatorname{Col}_1, \operatorname{Col}_2 \rangle = \langle \operatorname{Col}_1, 2 \cdot \operatorname{Col}_1 \rangle = 2 \cdot \langle \operatorname{Col}_1, \operatorname{Col}_1 \rangle = 2 \cdot \|\operatorname{Col}_1\|^2 = 2 \cdot 3^2 = 18$

Problem 3. Suppose that A is a matrix with 2022 columns and that v and w are orthogonal unit vectors satisfying $v \in \mathcal{E}_A(9)$ and $w \in \mathcal{E}_{A^{\intercal}}(-3)$.

- (3 pts) (a) The number of rows of A is 2022.
- (8 pts) (b) Show that $\boldsymbol{u} = A\boldsymbol{v}$ is an eigenvector of A and identify the corresponding eigenvalue. **Solution.** We are told that $\boldsymbol{v} \in \mathcal{E}_A(9)$, which means that $A\boldsymbol{v} = 9 \cdot \boldsymbol{v}$. We wish to show that \boldsymbol{u} is an eigenvector of A, which occurs if $A\boldsymbol{u} = \lambda \cdot \boldsymbol{u}$ for some scalar λ . Putting our given information together gives

$$A\boldsymbol{u} = AA\boldsymbol{v} = 9 \cdot A\boldsymbol{v} = 9 \cdot \boldsymbol{u}$$

Evidently, \boldsymbol{u} is indeed an eigenvector of A with eigenvalue $\lambda = 9$.

(8 pts) (c) Calculate $\langle \boldsymbol{v} + A\boldsymbol{w} + \boldsymbol{w}, \boldsymbol{w} \rangle$.

Solution. We are told that $v \in \mathcal{E}_A(9)$ and $w \in \mathcal{E}_{A^{\intercal}}(-3)$ are orthogonal unit vectors, which means the following equations hold.

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0$$
 $\|\boldsymbol{v}\| = \|\boldsymbol{w}\| = 1$ $A\boldsymbol{v} = 9 \cdot \boldsymbol{v}$ $A^{\mathsf{T}}\boldsymbol{w} = -3 \cdot \boldsymbol{w}$

The linearity properties of inner products then gives

$$\langle \boldsymbol{v} + A\boldsymbol{w} + \boldsymbol{w}, \boldsymbol{w} \rangle = \langle \boldsymbol{v}, \boldsymbol{w} \rangle + \langle A\boldsymbol{w}, \boldsymbol{w} \rangle + \langle \boldsymbol{w}, \boldsymbol{w} \rangle$$

$$= 0 + \langle \boldsymbol{w}, A^{\mathsf{T}}\boldsymbol{w} \rangle + \|\boldsymbol{w}\|^{2}$$

$$= \langle \boldsymbol{w}, A^{\mathsf{T}}\boldsymbol{w} \rangle + \|\boldsymbol{w}\|^{2}$$

$$= \langle \boldsymbol{w}, -3 \cdot \boldsymbol{w} \rangle + 1^{2}$$

$$= -3 \cdot \langle \boldsymbol{w}, \boldsymbol{w} \rangle + 1$$

$$= -3 \cdot \|\boldsymbol{w}\|^{2} + 1$$

$$= -3 \cdot 1^{2} + 1$$

$$= -2$$

Problem 4. Suppose $R = \begin{bmatrix} 3 & 2 & 5 & 1 \\ 0 & 7 & 9 & 2 \\ 0 & 0 & 6 & 5 \\ 0 & 0 & * & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ is in row echelon form and that **b** is a vector making $R\mathbf{x} = \mathbf{b}$ inconsistent.

- (2 pts) (a) The (4,3) entry of R (marked *) must equal <u>0</u>.
- (6 pts) (b) rank $(R) = \underline{4}$, nullity $(R) = \underline{0}$, and nullity $(R^{\intercal}) = \underline{1}$
- (5 pts) (c) Consider the augmented matrix $M = [R \mid b]$ (so M is 5 × 5). Which of the following adjectives applies to M?

 $\sqrt{\text{nonsingular}}$ \bigcirc symmetric \bigcirc rank one \bigcirc identity matrix \bigcirc reduced row echelon form

Problem 5. Consider the nonsingular matrix E and the reduced row echelon form matrix R given by

(12 pts) (a) Use the Gauß-Jordan algorithm to calculate the inverse of E. Solution. Following the algorithm from class, we have

$$\begin{bmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 3 & 0 & 10 & | & 0 & 1 & 0 \\ -2 & 1 & -6 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_2 - 3 \cdot r_1 \to r_2} \begin{bmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -3 & 1 & 0 \\ 0 & 1 & 0 & | & 2 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 0 & 1 \\ 0 & 0 & 1 & | & -3 & 1 & 0 \\ 0 & 0 & 1 & | & -3 & 1 & 0 \end{bmatrix}$$
$$\xrightarrow{r_1 - 3 \cdot r_3 \to r_1} \begin{bmatrix} 1 & 0 & 0 & | & 10 & -3 & 0 \\ 0 & 1 & 0 & | & 2 & 0 & 1 \\ 0 & 0 & 1 & | & -3 & 1 & 0 \end{bmatrix}$$

This gives $E^{-1} = \begin{bmatrix} 10 & -3 & 0 \\ 2 & 0 & 1 \\ -3 & 1 & 0 \end{bmatrix}$.

(12 pts) (b) Suppose that A is the matrix satisfying EA = R and consider the vector $\boldsymbol{b} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}$. Find all solutions to the system $A\boldsymbol{x} = \boldsymbol{b}$.

Solution. Multiplying $A\mathbf{x} = \mathbf{b}$ from the left by E gives $EA\mathbf{x} = E\mathbf{b}$, which reduces to $R\mathbf{x} = E\mathbf{b}$. In augmented form, this system is

1	-7	0	-6	1]
0	0	1	4	3
0	0	0	0	0

The system is consistent because there is no pivot in the augmented column. The dependent variables are x_1, x_3 , and the free variables are $x_2 = c_1$ and $x_4 = c_2$. The two equations in the above system are

$$x_1 - 7c_1 - 6c_2 = 1 \qquad \qquad x_3 + 4c_2 = 3$$

Solving for the dependent variables gives $x_1 = 1 + 7c_1 + 6c_2$ and $x_3 = 3 - 4c_2$. The general solution is then

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7c_1 + 6c_2 + 1 \\ c_1 \\ -4c_2 + 3 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 7 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 6 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

Problem 6. Suppose that A is 4×4 and that the matrix $5 \cdot I_4 - A$ can be reduced to row echelon form U with the following elementary row operations.

$$\left[\begin{array}{c} 5 \cdot I_4 - A\end{array}\right] \xrightarrow{\boldsymbol{r}_2 \ - \ \boldsymbol{r}_1 \ \rightarrow \ \boldsymbol{r}_2} \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right] \xrightarrow{\boldsymbol{r}_2 \ \boldsymbol{r}_3 \ \boldsymbol{r}_4 \ \boldsymbol{r}_4 \ \boldsymbol{r}_2 \ \boldsymbol{r}_4 \ \boldsymbol{r}_2 \ \boldsymbol{r}_4 \ \boldsymbol{r}_4 \ \boldsymbol{r}_2 \ \boldsymbol{r}_4 \ \boldsymbol{r}_4$$

These row reductions give a factorization $P(5 \cdot I_4 - A) = LU$.

(7 pts) (a) Find L.

Solution. According to our procedure from class, we introduce entries into L during elimination steps and swap rows during row swap steps.

																L		
0	0	0	0		0	0	0	0		0	0	0	0		1	0	0	0
0	0	0	0		1	0	0	0		1	0	0	0		1	1	0	0
0	0	0	0	\rightarrow	0	0	0	0	\rightarrow	0	1	0	0	\rightarrow	3	-4	1	0
0	0	0	0		3	0	0	0		3	-4	0	0		0	1	0	1

(6 pts) (b) Find P.

Solution. According to our algorithm from class, P starts as I_4 and is only affected by row-swaps.

						1	D	
[1	0	0	0		[1	0	0	0
0	1	0	0		0	1	0	0
0	0	1	0	\rightarrow	0	0	0	1
0	0	0	1		0	0	1	0

(6 pts) (c) The scalar $\lambda = \underline{5}$ is an eigenvalue of A and its geometric multiplicity is $gm_A(\lambda) = \underline{1}$.