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(5 pts) Problem 1. The matrix

Problem 2. Suppose that the first column of a matrix A is a vector with length three and that A satisfies each of
the following equations.

EI o _[ 7 o| [
A = |0 A =|-5 A =1
0 0 1
(5 pts) (a) If we write R® A Rb thena=__4 _andb=__3 .
0 -2 1
0 1 0
(5 pts) (b) Calculate A 1 0 ol
0 0 1

Solution. The columns of the second matrix come from the vectors multiplied in by A in the second, first, and
third equation respectively. This means that

A =|-5 0 1
Lo 2 0 -1
0 01

(5 pts) (¢) Could A be the incidence matrix of a directed graph? Briefly explain why or why not.

Solution. The middle equation is telling us that the third column of A is [7 -5 2]T7 but the only valid
entries in an incidence matrix are —1, 0, and 1. This means that A cannot be the incidence matrix of a digraph.

(5 pts) (d) Calculate the inner product of the first two columns of A. Hint. The first equation gives a relationship between
the first two columns of A.

Solution. The first equation is telling us that —2 - Col; 4+ Coly = O, which gives Coly = 2 - Col;. We are told
that ||Coly|| = 3, so

(Coly, Coly) = (Coly, 2 - Coly) =2 - (Coly, Coly) = 2-||Coly||2 =2-32 =18



Problem 3. Suppose that A is a matrix with 2022 columns and that v and w are orthogonal unit vectors satisfying
v € E4(9) and w € E47(—3).

(3 pts) (@) The number of rows of A is _2022 .
(8 pts) (b) Show that uw = Av is an eigenvector of A and identify the corresponding eigenvalue.

Solution. We are told that v € £4(9), which means that Av = 9-v. We wish to show that u is an eigenvector
of A, which occurs if Au = X - u for some scalar \. Putting our given information together gives

Au=AAv=9-Av=9 u

Evidently, u is indeed an eigenvector of A with eigenvalue A = 9.
(8 pts) (¢) Calculate (v + Aw + w, w).
Solution. We are told that v € £4(9) and w € £4+(—3) are orthogonal unit vectors, which means the following
equations hold.
(v,w) =0 lv|| = |lw] =1 Av=9-v ATw=-3 - w

The linearity properties of inner products then gives

(v+ Aw + w,w) = (v, w) + (Aw, w) + (w, w)
=0+ (w, ATw) + |w|®
= (w, ATw) + |[w]f?
= (w, -3 -w) + 17

=-3 - (w,w)+1
— 3 lw|2+1
=-3-1"+1
=-2
3 2 5 1
079 2
Problem 4. Suppose R= |0 0 6 5| isin row echelon form and that b is a vector making Rx = b inconsistent.
0 0 % 2
0 00O

(2 pts) (a) The (4,3) entry of R (marked %) must equal ___ 0 .
(6 pts) (b) rank(R)=__4 nullity(R)=__0 , and nullity(RT) = _1
(5 pts) (¢) Consider the augmented matrix M = [R | b] (so M is 5 x 5). Which of the following adjectives applies to M?

v/ nonsingular (O symmetric () rank one () identity matrix () reduced row echelon form



Problem 5. Consider the nonsingular matrix F and the reduced row echelon form matrix R given by

1 0 3 1 -7 0 -6
E = 3 0 10 R=10 0 1 4
-2 1 -6 0 0 0 0
(12 pts) (a) Use the GaufB-Jordan algorithm to calculate the inverse of E.
Solution. Following the algorithm from class, we have
10 31007«27:?1%”'103 1 0 0]
30 10/0 1 o] 2Ff2m=27™ g 0 1]-3 1 0
-2 1 —-6|0 0 1 0 1 0 2 0 1]
1 0 3 1 0 0]
T2ETl0 1 0 2 0 1
0 0 1]-3 1 0]
1 0 0|10 =3 0]
modraomi g 1 0 20 0 1
0 0 1|-3 1 0]
10 -3 0
This gives B~ = 2 0 1f.
-3 1 0

(12 pts) (b)

Suppose that A is the matrix satisfying FA = R and consider the vector b = [1 2 0} . Find all solutions to
the system Az = b.

Solution. Multiplying Az = b from the left by E gives EAx = Eb, which reduces to Rz = Eb. In augmented
form, this system is

1 =7 0 —-6]1

0 0 1 413

0 0 0 00
The system is consistent because there is no pivot in the augmented column. The dependent variables are z1, x3,
and the free variables are x5 = ¢; and x4 = ¢2. The two equations in the above system are

$1—7Cl—662:1 1’3+402:3

Solving for the dependent variables gives 1 = 1+ 7¢y + 6 ¢2 and x3 = 3 — 4 co. The general solution is then

T 7Cl+662+1 1 7 6
T2 C1 0 1 0
T=as| = —dey+3| T |3 T o] T 2|4
T4 Co 0 0 1



Problem 6. Suppose that A is 4 x 4 and that the matrix 5-I; — A can be reduced to row echelon form U with the
following elementary row operations.

U
Ty - rL — T2 r3 — T2 — T3 3 2 0 1
T4 — 3:T1 — T4 new e + 412 — 1y new r3ETL|(0 4 10
5.1, — A . . _
matrix matrix 0 0 7 1
0 0 0 O

These row reductions give a factorization P(5- Iy — A) = LU.
(7 pts) (a) Find L.
Solution. According to our procedure from class, we introduce entries into L during elimination steps and
swap rows during row swap steps.

L
0000 000 0 0 00 0 1 00 0
00 0 0 1000 1 00 0 1 10 0
0000 7loooo 7lo 1o0oo 73 410
000 0 300 0 3 -4 00 0 10 1

(6 pts) (b) Find P.

Solution. According to our algorithm from class, P starts as I; and is only affected by row-swaps.

,
1000 100 0
010 0 010 0
0010/ 7Joo0o01
000 1 0010

(6 pts) (¢) The scalar A\=__5  is an eigenvalue of A and its geometric multiplicity is gm ,(\) =__1 .



