DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam II

Name:

NetID:

Solutions

 $\label{eq:Interm} I \ have \ adhered \ to \ the \ Duke \ Community \ Standard \ in \ completing \ this \ exam.$

Signature:

October 28, 2022

- There are 100 points and 6 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. The rows of $A = \begin{bmatrix} -1 & 1 & 2 \\ -2 & 1 & 5 \\ 0 & 0 & 0 \\ 1 & -3 & 1 \\ -4 & 5 & 6 \end{bmatrix}$ satisfy $\operatorname{Row}_1 + \operatorname{Row}_2 + \operatorname{Row}_3 = \operatorname{Row}_4 + \operatorname{Row}_5$.

(5 pts) (a) Determine if $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Null}(A)$. Clearly explain your reasoning.

Solution. This is a question of whether or not $A\begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}} = \mathbf{O}$, which is resolved by the calculation

$$\begin{bmatrix} -1 & 1 & 2\\ -2 & 1 & 5\\ 0 & 0 & 0\\ 1 & -3 & 1\\ -4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ -1\\ 0\\ -2\\ 1 \end{bmatrix} \neq \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

Evidently, $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}} \notin \operatorname{Null}(A)$.

Of course, it also suffices to note that $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$ is not orthogonal to any of the second, fourth, or fifth rows of A.

(5 pts) (b) Determine if $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Col}(A)$. Clearly explain your reasoning. *Hint*. What is the third coordinate of every column of A?

Solution. The third coordinate of every column of A is zero, which means no linear combination of the columns of A will produce $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$. This means that $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \notin \operatorname{Col}(A)$.

(5 pts) (c) Determine if $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Col}(A^{\mathsf{T}})$. Clearly explain your reasoning.

Solution. This matrix has three rows, so $\operatorname{Col}(A^{\intercal}) \subset \mathbb{R}^3$. The vector $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\intercal}$ is certainly not in $\operatorname{Col}(A^{\intercal})$.

(5 pts) (d) Find a vector \boldsymbol{v} in Null(A^{\intercal}) such that every coordinate of \boldsymbol{v} is not zero. Solution. We are told that $\operatorname{Row}_1 + \operatorname{Row}_2 + \operatorname{Row}_3 = \operatorname{Row}_4 + \operatorname{Row}_5$, which is equivalent to

 $\operatorname{Row}_1 + \operatorname{Row}_2 + \operatorname{Row}_3 - \operatorname{Row}_4 - \operatorname{Row}_5 = O$

This means that

$$\begin{bmatrix} A^{\mathsf{T}} \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

A suitable choice for \boldsymbol{v} is thus $\boldsymbol{v} = \begin{bmatrix} 1 & 1 & 1 & -1 & -1 \end{bmatrix}^{\mathsf{T}}$.

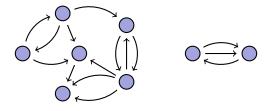
(8 pts) **Problem 2.** Suppose that A is $m \times n$ and that $v \in \text{Null}(A^{\intercal}A)$. Find the scalar value of $||Av||^2$.

Solution. We are given that $v \in \text{Null}(A^{\intercal}A)$, which means $A^{\intercal}Av = O$. It follows that

$$||A\boldsymbol{v}||^2 = \langle A\boldsymbol{v}, A\boldsymbol{v} \rangle = \langle \boldsymbol{v}, A^{\mathsf{T}}A\boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{O} \rangle = 0$$

Of course, the second equals sign is justified by the adjoint property of inner products.

Problem 3. The directed graph G depicted below has eight nodes and fifteen arrows.



Let A be the incidence matrix of G.

(4 pts) (a) $h_0(G) = ____2$ and $h_1(G) = ___9$

(8 pts) (b) Are the rows of A linearly independent? Clearly explain why or why not.
Solution. Since the rows of A are the columns of A^T, this is a question of whether or not A^T has full column rank, which is the same as asking if A is full row rank.
Note that A is 8 × 15. Since dim Null(A^T) = h₀(G) = 2, it follows that rank(A) = dim Col(A) = 8 - 2 = 6 ≠ 8. This means that A does not have independent rows!

(8 pts) **Problem 4.** The scalar $\lambda = 3$ is an eigenvalue of $A = \begin{bmatrix} 2 & 1 & 2 & 3 \\ -1 & 4 & 2 & 3 \\ 2 & -2 & -1 & -6 \\ -1 & 1 & 2 & 6 \end{bmatrix}$. According to a theorem from class,

every basis of $\mathcal{E}_A(\lambda)$ has the same number of vectors. Find this number and clearly justify your answer.

Solution. This is the dimension of the eigenspace $\mathcal{E}_A(3) = \text{Null}(3 \cdot I_4 - A)$, so we are looking for the nullity of $3 \cdot I_4 - A$. The characteristic matrix is

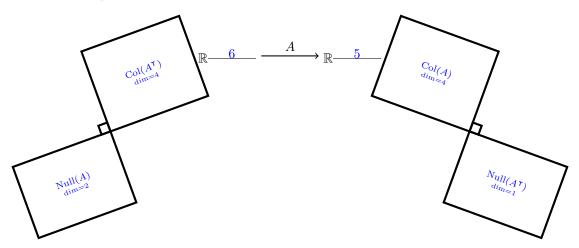
$l \cdot I_4$	A	rank one!
$\begin{bmatrix} 3 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$	$3 \begin{bmatrix} 1 & -1 & -2 & -3 \end{bmatrix}$
$0 \ 3 \ 0 \ 0$	-1 4 2	$3 \qquad 1 -1 -2 -3$
0 0 3 0 -	$ \begin{vmatrix} -1 & 4 & 2 \\ 2 & -2 & -1 \end{vmatrix} $	-6 = -2 2 4 6
$0 \ 0 \ 0 \ 3$	-1 1 2	$6 \qquad \qquad 1 -1 -2 -3 \end{bmatrix}$

Every column of $3 \cdot I_4 - A$ is a multiple of the first column, so $3 \cdot I_4 - A$ is rank one. This means that dim $\mathcal{E}_A(3) =$ nullity $(3 \cdot I_4 - A) = 4 - \text{rank}(3 \cdot I_4 - A) = 3$.

Problem 5. Suppose that EA = R where

$$E = \begin{bmatrix} 1 & 2 & 2 & -9 & -17 \\ -2 & -3 & -1 & 10 & 16 \\ 0 & -1 & -2 & 6 & 14 \\ 0 & -1 & -2 & 7 & 16 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & 0 & 3 & 0 & 0 & 7 \\ 0 & 1 & -8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(10 pts) (a) Fill in every missing label in the picture of the four fundamental subspaces below, including the dimension of each fundamental subspace.



- (4 pts) (b) Which of the following rows of E is orthogonal to the columns of A? Select all that apply (no partial credit on this problem). \bigcirc Row₁ \bigcirc Row₂ \bigcirc Row₃ \bigcirc Row₄ \checkmark Row₅
- (4 pts) (c) Which of the following vectors belongs to $\operatorname{Col}(A)$? Select all that apply (no partial credit on this problem). $\sqrt{\begin{bmatrix} 7 & -5 & 4 & 0 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 0 & 0 & 5 & 1 & 0 \end{bmatrix}^{\mathsf{T}} \sqrt{\begin{bmatrix} 2 & 0 & 5 & 0 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 3 & 0 & 0 & 0 & -2 \end{bmatrix}^{\mathsf{T}}$
- (4 pts) (d) Which of the following vectors belongs to Null(A^{\intercal})? Select all that apply (no partial credit on this problem). $\bigcirc \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\intercal} \sqrt{\begin{bmatrix} 0 & 0 & 0 & 2 & 6 \end{bmatrix}^{\intercal}} \sqrt{\begin{bmatrix} 0 & 0 & 0 & -3 & -9 \end{bmatrix}^{\intercal}} \bigcirc \begin{bmatrix} 0 & 0 & 0 & 3 & -1 \end{bmatrix}^{\intercal}$

(10 pts) (e) Find the projection of $\boldsymbol{b} = \begin{bmatrix} 0 & 0 & 100 & 100 \end{bmatrix}^{\mathsf{T}}$ onto $\operatorname{Col}(A)$.

Solution. Note that dim $\operatorname{Col}(A) = 4$ while dim $\operatorname{Null}(A^{\intercal}) = 1$. Since $\operatorname{Null}(A^{\intercal}) = \operatorname{Col}(A)^{\perp}$ it will be easier to start by projecting **b** onto $\operatorname{Null}(A^{\intercal})$.

To do so, note that the last row $\boldsymbol{v}_1 = \begin{bmatrix} 0 & 0 & 1 & 3 \end{bmatrix}^{\mathsf{T}}$ of E gives our basis vector of $\operatorname{Null}(A^{\mathsf{T}})$. The projection of \boldsymbol{b} onto $\operatorname{Null}(A^{\mathsf{T}})$ is then

$$P_{\text{Null}(A^{\intercal})}\boldsymbol{b} = \frac{1}{\|\boldsymbol{v}_1\|^2}\boldsymbol{v}_1\boldsymbol{v}_1^{\intercal}\boldsymbol{b} = \frac{1}{10}\begin{bmatrix}0\\0\\1\\3\end{bmatrix}\begin{bmatrix}0&0&0&1&3\end{bmatrix}\begin{bmatrix}0\\0\\100\\100\\100\\100\end{bmatrix} = \begin{bmatrix}0\\0\\40\\120\end{bmatrix}$$

The projection of \boldsymbol{b} onto $\operatorname{Col}(A)$ is then

$$\boldsymbol{b} - P_{\text{Null}(A^{\intercal})}\boldsymbol{b} = \begin{bmatrix} 0\\0\\100\\100\\100\end{bmatrix} - \begin{bmatrix} 0\\0\\0\\40\\120\end{bmatrix} = \begin{bmatrix} 0\\0\\100\\60\\-20\end{bmatrix}$$

Problem 6. Consider the matrices G, Q, and R given by

$$G = \begin{bmatrix} 1 & -14 & 9 \\ -14 & 221 & -106 \\ 9 & -106 & 146 \end{bmatrix} \qquad \qquad Q = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & -14 & * \\ 0 & 5 & * \\ 0 & 0 & 7 \end{bmatrix}$$

Suppose that A is a matrix whose Gramian is G and that A = QR. The entries of R marked * are unknown.

(5 pts) (a) Every column of $I_4 - QQ^{\intercal}$ belongs to one of the following vector spaces. Select this space. $\bigcirc \operatorname{Col}(A^{\intercal}) \bigcirc \operatorname{Null}(A) \bigcirc \operatorname{Col}(A) \checkmark \operatorname{Null}(A^{\intercal})$

(5 pts) (b) If possible, calculate $R^{\intercal}R$. If this is not possible, then explain why. Solution. In class we argued that $A^{\intercal}A = R^{\intercal}R$ when A = QR. We are told that $A^{\intercal}A = G$, so we immediately know that $R^{\intercal}R = G$ too.

(10 pts) (c) The vector $\boldsymbol{b} = \begin{bmatrix} 5\sqrt{3} & -5\sqrt{3} & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ satisfies $A^{\mathsf{T}}\boldsymbol{b} = \begin{bmatrix} 5 & -95 & 25 \end{bmatrix}^{\mathsf{T}}$. Find all solutions \boldsymbol{x} to $G\boldsymbol{x} = A^{\mathsf{T}}\boldsymbol{b}$. **Solution.** The system $G\boldsymbol{x} = A^{\mathsf{T}}\boldsymbol{b}$ is $A^{\mathsf{T}}A\boldsymbol{x} = A^{\mathsf{T}}\boldsymbol{b}$, which is the least squares problem! Since A = QR, we can instead solve $R\boldsymbol{x} = Q^{\mathsf{T}}\boldsymbol{b}$. To do so, we start by calculating

To do so, we start by calculating

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 0 & -1 & 1 & 1\\ -1 & 0 & 1 & -1\\ -1 & -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{b}{5\sqrt{3}} \\ -5\sqrt{3} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 & 1\\ -1 & 0 & 1 & -1\\ -1 & -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 5\\ -5\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} 5\\ -5\\ 0 \\ 0 \end{bmatrix}$$

Now, we solve $R\boldsymbol{x} = Q^{\mathsf{T}}\boldsymbol{b}$ with back-substitution

The only solution to $G\boldsymbol{x} = A^{\mathsf{T}}\boldsymbol{b}$ is $\boldsymbol{x} = \begin{bmatrix} -9 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$.