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Problem 1. The rows of A = 0 0 0] satisfy Row; + Rows + Rows = Row, + Rows.
1 -3 1
—4 5 6

(5 pts) (a) Determine if [1 1 O]T € Null(A). Clearly explain your reasoning.

(5 pts) (b)

(5 pts) (c)

(5 pts) (d)

Solution. This is a question of whether or not A[1 1 0]" = O, which is resolved by the calculation

A
-1 1 2 0] o
—2 1 5|1 -1 0
0 0 0|[1] =] 0]+ |0
1 -3 1/[0 2| |0
4 5 6 1 0

Evidently, [1 1 0]7 ¢ Null(A).

Of course, it also suffices to note that [1 1 O] " is not orthogonal to any of the second, fourth, or fifth rows of

A.

Determine if [0 0 1 0 O]T € Col(A). Clearly explain your reasoning. Hint. What is the third coordinate
of every column of A?

Solution. The third coordinate of every column of A is zero, which means no linear combination of the columns
of A will produce [0 0 1 0 0]T. This means that [0 0 1 0 0]T ¢ Col(A).

Determine if [1 1 1 1 1]T € Col(AT). Clearly explain your reasoning.

Solution. This matrix has three rows, so Col(AT) C R3. The vector [I 1 1 1 1]T is certainly not in
Col(AT).

Find a vector v in Null(AT) such that every coordinate of v is not zero.

Solution. We are told that Row; + Rows + Rows = Row,4 + Rows, which is equivalent to
ROW1 + ROW2 + ROWg — ROW4 — ROW5 =0

This means that
1
1 0
AT 1| = 1|0
1 0
1

A suitable choice for v is thus v = [1 1 1 -1 —1} T



(8 pts) Problem 2. Suppose that A is m x n and that v € Null(ATA). Find the scalar value of || Av||?.

Solution. We are given that v € Null(ATA), which means ATAv = O. It follows that
|40 = (A, Av) = (v, AT Av) = (v,0) =

Of course, the second equals sign is justified by the adjoint property of inner products.

Problem 3. The directed graph G depicted below has eight nodes and fifteen arrows.

Let A be the incidence matrix of G.

(4 pts) (a) ho(G) = 2 and hi(G) = 9
(8 pts) (b) Are the rows of A linearly independent? Clearly explain why or why not.

Solution. Since the rows of A are the columns of AT, this is a question of whether or not AT has full column
rank, which is the same as asking if A is full row rank.

Note that A is 8 x 15. Since dim Null(AT) = ho(G) = 2, it follows that rank(A4) = dim Col(A) =8 —2 =6 # 8.
This means that A does not have independent rows!

2 1 2 3
. . -1 4 2 3 .
(8 pts) Problem 4. The scalar A = 3 is an eigenvalue of A = 9 _9 _1 6l According to a theorem from class,

-1 1 2 6
every basis of £4(A) has the same number of vectors. Find this number and clearly justify your answer.

Solution. This is the dimension of the eigenspace £4(3) = Null(3 - Iy — A), so we are looking for the nullity of
3.1, — A. The characteristic matrix is

I-1y A rank one!
30 0 0 2 1 2 3 1 -1 -2 -3
0300 [-1 4 2 3 |1 -1 -2 -3
00 3 0f | 2 -2 -1 —6| |-2 2 4 6
0 0 0 3 -1 1 2 6 1 -1 -2 -3

Every column of 3 - I, — A is a multiple of the first column, so 3 - I — A is rank one. This means that dim£4(3) =
nullity(3- Iy — A) =4 —rank(3- I, — A) = 3.



Problem 5. Suppose that EA = R where

1 2 2 -9 17 10 3 00 7

-2 -3 -1 10 16 01 -8 00 O

E=| 0 -1 -2 6 14 R=10 0 01 0 O
0 -1 -2 7 16 00 001 =5

0O 0 0 1 3 00 O0O0O0 O

(10 pts) (@) Fill in every missing label in the picture of the four fundamental subspaces below, including the dimension of
each fundamental subspace.

(4 pts) (b) Which of the following rows of E is orthogonal to the columns of A? Select all that apply (no partial credit on
this problem). O Row; (O Rows (O Rows (O Rows +/ Rows

4 pts) (¢) Which of the following vectors belongs to Col(A)? Select all that apply (no partial credit on this problem).

(
\/[7—5400}T O[OO5IO]T \/[20500]T Q[3OOO—2}T

(4 pts) (d) Which of the following vectors belongs to Null(AT)? Select all that apply (no partial credit on this problem).
oOpr 111t ypoooz2e6" J[OOO0O -39 Of 003 -1

(10 pts) (e) Find the projection of b= [0 0 100 100 100]" onto Col(A).

Solution. Note that dim Col(A) = 4 while dim Null(AT) = 1. Since Null(AT) = Col(A4)~ it will be easier to
start by projecting b onto Null(AT).

To do so, note that the last row vy = [0 0 0 1 3} T of E gives our basis vector of Null(AT). The projection
of b onto Null(AT) is then

0 0 0
) Lo 0 0
Pyan(anyb = ——=viwlb=— 0/ [0 0 0 1 3]{100| =] 0
loa 107 100 40
3 100 120
The projection of b onto Col(A) is then
0 0 0
0 0 0
b— Pyananb = |100| — | 0| = | 100

100 40 60
100 120 —20



Problem 6. Consider the matrices G, @), and R given by

0 -1 -1

1 14 9 1 14 «
G=|-14 221 —106 Q- B R=1|0 5 «
9 106 146 V3 0 07

1 -1 0

Suppose that A is a matrix whose Gramian is G and that A = QR. The entries of R marked * are unknown.
(5 pts) (a) Every column of Iy — QQT belongs to one of the following vector spaces. Select this space.
O Col(AT) O Null(4) O Col(A) +/ Null(AT)
(5 pts) (b) If possible, calculate RTR. If this is not possible, then explain why.

Solution. In class we argued that ATA = RTR when A = QR. We are told that ATA = G, so we immediately
know that RTR = G too.

(10 pts) (¢) The vector b = [5 V3 =5v3 0 O]T satisfies ATb = [5 -95 25}T. Find all solutions x to G = ATb.

Solution. The system Gx = ATb is ATAx = ATb, which is the least squares problem! Since A = QR, we can
instead solve Rx = QTb.
To do so, we start by calculating

b
QT
0 -1 1 1 5V3 0 -1 1 1 0 5
1 —5/3 -5
— -1 0 1 -1 ol = -1 0 1 -1 ol = -5
V3 -1 -1 -1 0 -1 -1 -1 0 0
0 0
Now, we solve Rx = QTb with back-substitution
x1 — 1ldxe + xx3 = 5 — x1=-9
S5rs + *xx3 = —H — x9=-—1
Txs = 0 — x3=0

The only solution to Gz = ATbisz = [-9 -1 0]".



