DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam III

Name:

NetID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

December 2, 2022

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. Consider the matrix A and its characteristic polynomial $\chi_A(t)$ given by

$$A = \begin{bmatrix} 1 & 27 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 8 & 3 & c \\ 0 & 0 & -4 & -1 & -4 \end{bmatrix} \qquad \qquad \chi_A(t) = t^5 + \underline{\qquad} t^4 - 5t^3 + 5t^2 + 4t - 4$$

Note that the (4,5) entry of A is a variable marked c. Also note that the coefficient of t^4 in $\chi_A(t)$ is blank. (4 pts) (a) Fill in the blank coefficient of t^4 in $\chi_A(t)$.

(10 pts) (b) Find c. Hint. What is det(A)?

(10 pts) (c) The scalar 2 is an eigenvalue of A. Suppose that v is an eigenvector of A corresponding to the eigenvalue 2. Show that v is also an eigenvector of adj(A) and identify its corresponding eigenvalue λ . **Problem 2.** Consider the following matrix factorization $A = XDX^{-1}$.

$$A \quad \left] = \begin{bmatrix} x & z & z & z \\ 1 & -3 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -2 & 2 & 1 & 1 \\ 2 & -4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 & 0 & z \\ 0 & i & 0 & 0 & 0 \\ 0 & 0 & 1 - i & 0 \\ 0 & 0 & 0 & 1 - i \end{bmatrix} \begin{bmatrix} -7 & -9 & -2 & 2 \\ -4 & -5 & -1 & 1 \\ -2 & -2 & 0 & 1 \\ -4 & -6 & -1 & 1 \end{bmatrix}$$

(5 pts) (a) The eigenvalue of A with the largest geometric multiplicity is $\lambda = ___$ and that multiplicity is $___$.

(4 pts) (b) $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 2 \\ -4 \end{bmatrix} =$

(8 pts) (c) Calculate det(A). Simplify your answer to a complex number of the form a + bi.

(8 pts) (d) Calculate $\chi_A(3-i)$. Simplify your answer to a complex number of the form a + bi.

Problem 3. Consider the factorization $A = XBX^{-1}$ below.

$$\begin{bmatrix} -4 & 2 & -7 \\ -2 & 1 & -5 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -1 \\ 0 & -1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 2 & -4 \\ 4 & -2 & 5 \\ -2 & 1 & -3 \end{bmatrix} \quad B^2 = B^3 = B^3$$

(3 pts) (a) Fill in the blanks above to calculate B^2 and B^3 .

(4 pts) (b) trace(A) = _____, det(A) = _____, and
$$\chi_A(t) = _____$$

(10 pts) (c) Use the Taylor series definition of matrix exponentials to show that $\exp(Bt) = \begin{bmatrix} 1 & t & 1/2t^2 + 2t \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}$.

(10 pts) (d) Let $\boldsymbol{u}(t)$ be the solution to $\boldsymbol{u}' = A\boldsymbol{u}$ with initial condition $\boldsymbol{u}(0) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. Calculate $\boldsymbol{u}(2)$.

Problem 4. Consider the quadratic form $q(\mathbf{x}) = \langle \mathbf{x}, S\mathbf{x} \rangle$ where S is the *singular* real-symmetric matrix satisfying

$$\begin{bmatrix} S \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} S \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 3 \\ -1 \\ c \end{bmatrix} = \begin{bmatrix} -3 \\ 9 \\ -3 \\ 3c \end{bmatrix} \qquad \begin{bmatrix} S \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 12 \\ 24 \end{bmatrix}$$

Note that the last coordinate of the vector v_2 above is marked as the variable c.

- (7 pts) (a) The trace of S is trace(S) =_____ and the value of c is c =_____.
- (3 pts) (b) Which of the following adjectives apply to $q(\mathbf{x})$? Select all that apply (no partial credit on this problem). \bigcirc positive definite \bigcirc positive semidefinite \bigcirc negative definite \bigcirc negative semidefinite \bigcirc indefinite
- (4 pts) (c) Which of the following vectors \boldsymbol{x} satisfies $q(\boldsymbol{x}) = 0$? $\bigcirc \boldsymbol{x} = \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \boldsymbol{x} = \begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \boldsymbol{x} = \begin{bmatrix} 0 & 3 & -2 & 1 \end{bmatrix}^{\mathsf{T}} \bigcirc$ none of these
- (6 pts) (d) Complete the square to write q(x) as a linear combination of squares. Note. You may leave c as a variable to solve this problem.

(4 pts) (e) The quadratic form $q(\mathbf{x}) = q(x_1, x_2, x_3, x_4)$ is a scalar field on \mathbb{R}^4 . Calculate $\frac{\partial q}{\partial x_2}$.