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(4 pts) Problem 1. Suppose that A is a 5 X 4 matrix. Fill in the entries in the vector v below to make the equation true.

A = (twice the second column of A) minus (the third column of A)

(4 pts) Problem 2. One of the following vectors cannot be expressed as a linear combination of [3 0 —5} T and [7 0 9} T
Select this vector.

Of oo OM6 06" O 0 32" OO 0 4" 0o 1 0]

(4 pts) Problem 3. Suppose that v, w, &, y, and z are vectors represented geometrically by arrows that fit into the diagram
below.

Fill in the blanks in the above equation to correctly express v as a linear combination of w, x, y, and z.

Problem 4. Consider the digraph G and its incidence matrix A depicted below.

Note that G is missing an arrow!
(4 pts) (a) Draw the missing arrow in the figure depicting G above.
(6 pts) (b) The incidence matrix A satisfies nullity (AT) = 1. Use this information to fill in the blanks below.
rank(4) =__ 2 nullity(A) = __3 rank(AT)=__ 2
(8 pts) Problem 5. Suppose that S = A + AT where A is 2022 x 2022. Show that S is symmetric.

Solution. ST=(A+ AT)T=AT+ (AT)T=AT4+ A=S



(20 pts) Problem 6. Consider the matrix A given by

1 2 -3 0
-2 —4 6 0
A=119 6 5 o0
-1 -1 5 1

Use the GauB-Jordan algorithm to calculate rref(A). You must follow the algorithm precisely and correctly label
each row-reduction to receive credit.

Solution. Following the algorithm, we have

A

1 2 -3 0] mat2m—om [1 2 =3 0]
—2 —4 6 0| ¥ M3 |00 00
1 6 5 0 04 8 0
-1 -1 5 1 01 21
1 2 -3 0]
s |04 8 0
00 00
01 21
1 2 -3 0]
1/aro—1ro 0 1 2 0
00 00
01 21
1 0 —7 0]
mIPEI o1 2 0
00 00
00 01

rref(A)
1 0 =7 0]
mors (001 20
00 01
00 0 0




Problem 7. Suppose that A is a nonsingular matrix that satisfies the following equation.

B
-1 0 -4 1 -1 —4 0 -1 30
A -5 0 -5 4 -1/ |21 -2 -7 0
-1 1 1 =5 1 00 1 50
40 2 2 0 31 1 —13 1

(4 pts) (@) The number of columns of Ais __ 4 and the number of rowsof Ais 4 .
(7 pts) (b) Find the third column of A. Clearly explain your reasoning to receive credit.

Solution. The second column of Bis [0 0 1 0] T. Since the third column of A is A 0 0 1 0 T it follows
that the third column of A is the second column of AB, which is [0 1 0 1]T.

(7pts) (c) Let b= [-1 -2 1 1]T (the third column of AB). Find all solutions & to Az = b. Clearly explain your
reasoning to receive credit.

Solution. Note that b = [—1 -2 1 1} T is the third column of AB, which means chosing & = [—4 -5 1 2] T
(the third column of B) gives a solution to Az = b. There are no other solutions because A is nonsingular.

(7 pts) (d) Find the last column of A~!. Clearly explain your reasoning to receive credit.
Hint. Start by explaining what the last column of AA~! is.

Solution. Recall that AA~! = I,. This means that the last column of AA~! is [O 0 0 1}T, which is also
the last column of AB. Hence the last column of B is the last column of A~1.



Problem 8. Consider the EA = R factorization given by

(5 pts) (a)

(10 pts) (b)

(10 pts) (c¢)

E R
1 -1 2 1 1 0 3 0 -2
0 1 -1 3 A 1001 -6 0 -5
1 0 2 -1 0 0 0 1 3
0 -1 0 3 0 0 0 0 0

Which of the columns of A is a nonpivot column? Select all that apply.

O Coly (O Coly +/ Cols (O Coly +/ Cols

Suppose that the first column of Ais [-1 -3 0 —1] T and that the second column of A is 2 0 -1 0] T
Find the third column of A. Clearly explain your reasoning to receive credit.

Solution. The third column of A is a nonpivot column whose column relation is

-1 2 —15
-3 0 -9
Colz = 3Col; —6Coly = 3 - 0 —6- = o

Let b= [1 0 1 0] 7. Find the full solution to Az = b and write your solution in the form & = x, + ¢ -1 +
-+ 4+ ¢p - . If no solution exists, then explain why. Clearly explain your reasoning to receive credit.

Solution. Multiplying Az = b on the left by F gives EAx = Eb, which is Rx = Eb. In augmented form, this
means that [A | b] reduces to [R | Eb], which is

10 3 0 -2 3
01 -6 0 —5]-1
00 01 3 3
00 00 O 0

Our dependent variables are {1,x2,24} and our free variables are x3 = ¢; and x5 = ¢3. Solving for the
dependent variables in terms of the free variables gives

x Tp 1 o
xr1 —3c1+2c+3 3 -3 2
X2 601 + 502 —1 —1 6 5
xr3| = cl| = 0| +c1- Tl +co- 0
T4 —3c+3 3 0 -3

Is C2 0 0 1



