DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam I

Name:

NetID:

Solutions

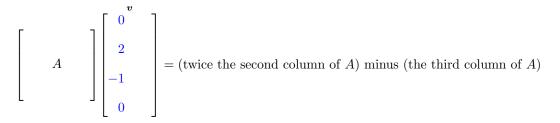
 $\label{eq:Interm} I \ have \ adhered \ to \ the \ Duke \ Community \ Standard \ in \ completing \ this \ exam.$

Signature:

February 4, 2022

- There are 100 points and 8 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

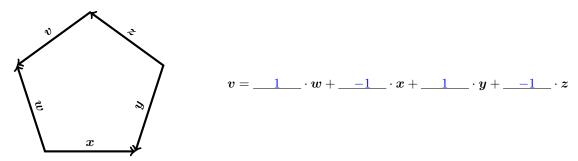
(4 pts) **Problem 1.** Suppose that A is a 5×4 matrix. Fill in the entries in the vector \boldsymbol{v} below to make the equation true.



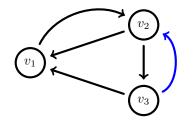
(4 pts) **Problem 2.** One of the following vectors cannot be expressed as a linear combination of $\begin{bmatrix} 3 & 0 & -5 \end{bmatrix}^{\mathsf{T}}$ and $\begin{bmatrix} 7 & 0 & 9 \end{bmatrix}^{\mathsf{T}}$. Select this vector.

 $\bigcirc \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}} & \bigcirc \begin{bmatrix} 46 & 0 & 6 \end{bmatrix}^{\mathsf{T}} & \bigcirc \begin{bmatrix} 18 & 0 & 32 \end{bmatrix}^{\mathsf{T}} & \bigcirc \begin{bmatrix} 10 & 0 & 4 \end{bmatrix}^{\mathsf{T}} & \checkmark \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$

(4 pts) **Problem 3.** Suppose that v, w, x, y, and z are vectors represented geometrically by arrows that fit into the diagram below.



Fill in the blanks in the above equation to correctly express v as a linear combination of w, x, y, and z. **Problem 4.** Consider the digraph G and its incidence matrix A depicted below.



$$A = \begin{bmatrix} 0 & 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 1 & -1 \\ 1 & -1 & -1 & 0 & 0 \end{bmatrix}$$

Note that G is missing an arrow!

(4 pts) (a) Draw the missing arrow in the figure depicting G above.

(6 pts) (b) The incidence matrix A satisfies nullity $(A^{\intercal}) = 1$. Use this information to fill in the blanks below.

$$\operatorname{rank}(A) = \underline{2}$$
 $\operatorname{nullity}(A) = \underline{3}$ $\operatorname{rank}(A^{\intercal}) = \underline{2}$

(8 pts) **Problem 5.** Suppose that $S = A + A^{\intercal}$ where A is 2022×2022 . Show that S is symmetric.

Solution. $S^{\intercal} = (A + A^{\intercal})^{\intercal} = A^{\intercal} + (A^{\intercal})^{\intercal} = A^{\intercal} + A = S$

(20 pts) **Problem 6.** Consider the matrix A given by

$$A = \begin{bmatrix} 1 & 2 & -3 & 0 \\ -2 & -4 & 6 & 0 \\ 1 & 6 & 5 & 0 \\ -1 & -1 & 5 & 1 \end{bmatrix}$$

Use the Gauß-Jordan algorithm to calculate $\operatorname{rref}(A)$. You must follow the algorithm precisely and correctly label each row-reduction to receive credit.

Solution. Following the algorithm, we have

Problem 7. Suppose that A is a nonsingular matrix that satisfies the following equation.

$$A \qquad \begin{bmatrix} -1 & 0 & -4 & 1 & -1 \\ -5 & 0 & -5 & 4 & -1 \\ -1 & 1 & 1 & -5 & 1 \\ 4 & 0 & 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 & -1 & 3 & 0 \\ 2 & 1 & -2 & -7 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 3 & 1 & 1 & -13 & 1 \end{bmatrix}$$

- (4 pts) (a) The number of columns of A is $\underline{4}$ and the number of rows of A is $\underline{4}$.
- (7 pts) (b) Find the third column of A. Clearly explain your reasoning to receive credit.

Solution. The second column of *B* is $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. Since the third column of *A* is $A\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$, it follows that the third column of *A* is the second column of *AB*, which is $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$.

(7 pts) (c) Let $\boldsymbol{b} = \begin{bmatrix} -1 & -2 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ (the third column of AB). Find all solutions \boldsymbol{x} to $A\boldsymbol{x} = \boldsymbol{b}$. Clearly explain your reasoning to receive credit.

Solution. Note that $\boldsymbol{b} = \begin{bmatrix} -1 & -2 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ is the third column of AB, which means choosing $\boldsymbol{x} = \begin{bmatrix} -4 & -5 & 1 & 2 \end{bmatrix}^{\mathsf{T}}$ (the third column of B) gives a solution to $A\boldsymbol{x} = \boldsymbol{b}$. There are no other solutions because A is nonsingular.

(7 pts) (d) Find the last column of A^{-1} . Clearly explain your reasoning to receive credit.

Hint. Start by explaining what the last column of AA^{-1} is.

Solution. Recall that $AA^{-1} = I_4$. This means that the last column of AA^{-1} is $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$, which is also the last column of AB. Hence the last column of B is the last column of A^{-1} .

Problem 8. Consider the EA = R factorization given by

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -3 \\ 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 0 & -2 \\ 0 & 1 & -6 & 0 & -5 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(5 pts) (a) Which of the columns of A is a *nonpivot column*? Select all that apply.

 $\bigcirc \operatorname{Col}_1 \quad \bigcirc \operatorname{Col}_2 \quad \sqrt{\operatorname{Col}_3} \quad \bigcirc \operatorname{Col}_4 \quad \sqrt{\operatorname{Col}_5}$

(10 pts) (b) Suppose that the first column of A is $\begin{bmatrix} -1 & -3 & 0 & -1 \end{bmatrix}^{\mathsf{T}}$ and that the second column of A is $\begin{bmatrix} 2 & 0 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$. Find the third column of A. Clearly explain your reasoning to receive credit.

Solution. The third column of A is a nonpivot column whose column relation is

$$\operatorname{Col}_{3} = 3\operatorname{Col}_{1} - 6\operatorname{Col}_{2} = 3 \cdot \begin{bmatrix} -1\\ -3\\ 0\\ -1 \end{bmatrix} - 6 \cdot \begin{bmatrix} 2\\ 0\\ -1\\ 0 \end{bmatrix} = \begin{bmatrix} -15\\ -9\\ 6\\ -3 \end{bmatrix}$$

(10 pts) (c) Let $\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. Find the full solution to $A\boldsymbol{x} = \boldsymbol{b}$ and write your solution in the form $\boldsymbol{x} = \boldsymbol{x}_p + c_1 \cdot \boldsymbol{x}_1 + \cdots + c_k \cdot \boldsymbol{x}_k$. If no solution exists, then explain why. Clearly explain your reasoning to receive credit.

Solution. Multiplying $A\mathbf{x} = \mathbf{b}$ on the left by E gives $EA\mathbf{x} = E\mathbf{b}$, which is $R\mathbf{x} = E\mathbf{b}$. In augmented form, this means that $[A \mid \mathbf{b}]$ reduces to $[R \mid E\mathbf{b}]$, which is

[1	0	3	0	-2	3
0	1	-6	0	-5	-1
0	0	0	1	3	3
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	0	0	$\begin{array}{c}3\\-1\\3\\0\end{array}$

Our dependent variables are $\{x_1, x_2, x_4\}$ and our free variables are $x_3 = c_1$ and $x_5 = c_2$. Solving for the dependent variables in terms of the free variables gives

$$\begin{bmatrix} x \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -3c_1 + 2c_2 + 3 \\ 6c_1 + 5c_2 - 1 \\ c_1 \\ -3c_2 + 3 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 3 \\ 0 \end{bmatrix} + c_1 \cdot \begin{bmatrix} -3 \\ 6 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \cdot \begin{bmatrix} 2 \\ 5 \\ 0 \\ -3 \\ 1 \end{bmatrix}$$