DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam I

Name:

NetID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

February 4, 2022

- There are 100 points and 8 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

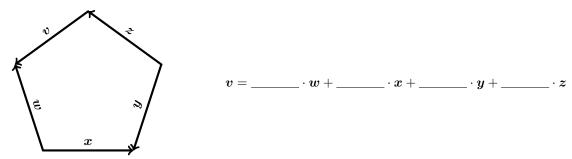
(4 pts) Problem 1. Suppose that A is a 5×4 matrix. Fill in the entries in the vector v below to make the equation true.

 $\begin{bmatrix} & A \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} = (\text{twice the second column of } A) \text{ minus (the third column of } A)$

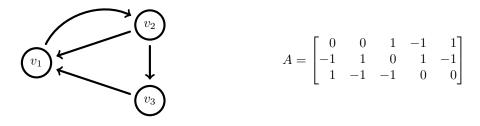
(4 pts) **Problem 2.** One of the following vectors cannot be expressed as a linear combination of $\begin{bmatrix} 3 & 0 & -5 \end{bmatrix}^{\mathsf{T}}$ and $\begin{bmatrix} 7 & 0 & 9 \end{bmatrix}^{\mathsf{T}}$. Select this vector.

 $\bigcirc \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 46 & 0 & 6 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 18 & 0 & 32 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 10 & 0 & 4 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$

(4 pts) **Problem 3.** Suppose that v, w, x, y, and z are vectors represented geometrically by arrows that fit into the diagram below.



Fill in the blanks in the above equation to correctly express v as a linear combination of w, x, y, and z. **Problem 4.** Consider the digraph G and its incidence matrix A depicted below.



Note that G is missing an arrow!

(4 pts) (a) Draw the missing arrow in the figure depicting G above.

(6 pts) (b) The incidence matrix A satisfies nullity $(A^{\intercal}) = 1$. Use this information to fill in the blanks below.

 $\operatorname{rank}(A) = _$ $\operatorname{nullity}(A) = _$ $\operatorname{rank}(A^{\intercal}) = _$

(8 pts) **Problem 5.** Suppose that $S = A + A^{\intercal}$ where A is 2022×2022 . Show that S is symmetric.

(20 pts) **Problem 6.** Consider the matrix A given by

$$A = \begin{bmatrix} 1 & 2 & -3 & 0 \\ -2 & -4 & 6 & 0 \\ 1 & 6 & 5 & 0 \\ -1 & -1 & 5 & 1 \end{bmatrix}$$

Use the Gauß-Jordan algorithm to calculate $\operatorname{rref}(A)$. You must follow the algorithm precisely and correctly label each row-reduction to receive credit.

Problem 7. Suppose that A is a nonsingular matrix that satisfies the following equation.

р

$$\begin{bmatrix} & A \\ & A \end{bmatrix} \begin{bmatrix} -1 & 0 & -4 & 1 & -1 \\ -5 & 0 & -5 & 4 & -1 \\ -1 & 1 & 1 & -5 & 1 \\ 4 & 0 & 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 & -1 & 3 & 0 \\ 2 & 1 & -2 & -7 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 3 & 1 & 1 & -13 & 1 \end{bmatrix}$$

(4 pts) (a) The number of columns of A is _____ and the number of rows of A is _____.
(7 pts) (b) Find the third column of A. Clearly explain your reasoning to receive credit.

(7 pts) (c) Let $\boldsymbol{b} = \begin{bmatrix} -1 & -2 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ (the third column of AB). Find all solutions \boldsymbol{x} to $A\boldsymbol{x} = \boldsymbol{b}$. Clearly explain your reasoning to receive credit.

(7 pts) (d) Find the last column of A^{-1} . Clearly explain your reasoning to receive credit. *Hint.* Start by explaining what the last column of AA^{-1} is. **Problem 8.** Consider the EA = R factorization given by

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -3 \\ 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 0 & -2 \\ 0 & 1 & -6 & 0 & -5 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(5 pts) (a) Which of the columns of A is a *nonpivot column*? Select all that apply.

$$\bigcirc$$
 Col₁ \bigcirc Col₂ \bigcirc Col₃ \bigcirc Col₄ \bigcirc Col₅

(10 pts) (b) Suppose that the first column of A is $\begin{bmatrix} -1 & -3 & 0 & -1 \end{bmatrix}^{\mathsf{T}}$ and that the second column of A is $\begin{bmatrix} 2 & 0 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$. Find the third column of A. Clearly explain your reasoning to receive credit.

(10 pts) (c) Let $\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. Find the full solution to $A\boldsymbol{x} = \boldsymbol{b}$ and write your solution in the form $\boldsymbol{x} = \boldsymbol{x}_p + c_1 \cdot \boldsymbol{x}_1 + \cdots + c_k \cdot \boldsymbol{x}_k$. If no solution exists, then explain why. Clearly explain your reasoning to receive credit.