DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam II

Name:

NetID:

Solutions

I have adhered to the Duke Community Standard in completing this exam.

Signature:

March 4, 2022

- $\bullet\,$ There are 100 points and 5 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. The following row-reductions calculate the matrix U in PA = LU.

$$\begin{bmatrix} 6 & -36 & 7\\ 12 & -72 & 14\\ -18 & 108 & -16\\ -6 & 36 & 13 \end{bmatrix} \xrightarrow{\substack{\mathbf{r}_2 - 2 \cdot \mathbf{r}_1 \to \mathbf{r}_2\\ \mathbf{r}_4 + \mathbf{r}_1 \to \mathbf{r}_4\\ \mathbf{r}_1 \to \mathbf{r}_4 \\ \mathbf{r}_4 - \mathbf{r}_4 \to \mathbf{r}_4 \\ \mathbf{r}$$

(7 pts) (a) Find L.

Solution. Here we follow the algorithm from class.

	0
$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 1 & 0 \end{bmatrix}$	0
$\begin{vmatrix} 0 & 0 & 0 \end{vmatrix} \rightarrow \begin{vmatrix} -3 & 0 & 0 \end{vmatrix} \rightarrow \begin{vmatrix} 2 & 0 & 1 \end{vmatrix}$	0
	1

(10 pts) (b) Suppose that **b** is a vector satisfying $\begin{bmatrix} 60 & -60 & 0 & 0 \end{bmatrix}^{\mathsf{T}} = L^{-1}P\mathbf{b}$. Use this information to find all solutions \mathbf{x} to $A\mathbf{x} = \mathbf{b}$. Clearly explain your reasoning to receive credit.

Solution. Saying that $\begin{bmatrix} 60 & -60 & 0 \end{bmatrix}^{\mathsf{T}} = L^{-1}P\mathbf{b}$ is equivalent to saying that $L\mathbf{y} = P\mathbf{b}$ is solved by $\mathbf{y} = \begin{bmatrix} 60 & -60 & 0 \end{bmatrix}^{\mathsf{T}}$. We may then immediately jump to solving $U\mathbf{x} = \mathbf{y}$ with back-substitution.

$6x_1$	_	$36 x_2$	+	$7 x_3$	=	60	\rightarrow	x_1	=	$24 + 6 c_1$	<i>ж</i> Г]		[6a + 24]		Г <u>9</u> 4]		ГаЛ
				$5 x_3$	=	-60	\rightarrow	x_3	=	-12	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	_	$0 c_1 + 24$	_	24		
				0	=	0					$\begin{bmatrix} x_2 \\ x_2 \end{bmatrix}$	-	10 10	_	12	$+c_1$.	
				0	=	0					$\begin{bmatrix} x_3 \end{bmatrix}$		_12				[0]

(4 pts) (c) Which of the following statements accurately describes the rows and columns of A?

 \bigcirc The rows of A are independent and the columns of A are independent.

 \bigcirc The rows of A are dependent and the columns of A are independent.

 \bigcirc The rows of A are independent and the columns of A are dependent.

 $\sqrt{}$ The rows of A are dependent and the columns of A are dependent.

(4 pts) (d) The last two rows of one of the following matrices form a basis of Null(A^{\intercal}). Select this matrix. $\sqrt{L^{-1}P} \bigcirc L \bigcirc LP \bigcirc PL^{-1} \bigcirc UL$ **Problem 2.** Suppose that A is a 3×3 matrix satisfying the following three equations.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \quad \operatorname{rref} \begin{bmatrix} A & \begin{vmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \quad \operatorname{rref} \begin{bmatrix} A^{\mathsf{T}} & \begin{vmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & | & -11 \\ 0 & 1 & 1 & | & -7 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Note that $\operatorname{rref}(A)$ and $\operatorname{rref}(A^{\intercal})$ can be inferred from the second and third equations above.

- (4 pts) (a) The vector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space.
 - \bigcirc The null space. \checkmark The row space. \bigcirc The column space. \bigcirc The left null space.
- (4 pts) (b) The vector $\begin{bmatrix} 1 & -2 & -1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space. \bigcirc The null space. \bigcirc The row space. \checkmark The column space. \bigcirc The left null space.
- (5 pts) (c) Determine if $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Null}(A)$. Clearly explain your reasoning to receive credit.

Solution. The solutions to $A\mathbf{x} = \mathbf{O}$ are the same as the solutions to $\operatorname{rref}(A)\mathbf{x} = \mathbf{O}$. The middle equation gives us $\operatorname{rref}(A)$, so we need only calculate

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \neq \boldsymbol{O}$$

This means that $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\mathsf{T}} \notin \operatorname{Null}(A)$.

Alternatively, one may note that the nonzero rows of $\operatorname{rref}(A)$ form a basis of $\operatorname{Col}(A^{\intercal}) = \operatorname{Null}(A)^{\perp}$. The given vector is not orthogonal to either of those basis vectors so $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\intercal} \notin \operatorname{Null}(A)$.

(5 pts) (d) Find a basis of the left null space of A. Clearly explain your reasoning to receive credit.

Solution. As discussed in class, one basis of Null(A^{\intercal}) consists of the "pivot solutions" to $A^{\intercal} \boldsymbol{x} = \boldsymbol{O}$. We can find these solutions by looking at rref(A^{\intercal}), which is given in the third equation. Evidently, in $A^{\intercal} \boldsymbol{x} = \boldsymbol{O}$, the first two variables are dependent and the third is free. Looking at the relevant equations here gives Null(A^{\intercal}) = Span{ $\begin{bmatrix} -1 & -1 & 1 \end{bmatrix}^{\intercal}$ }.

(7 pts) **Problem 3.** Suppose that A and B are $n \times n$ matrices and that $v \in \mathbb{R}^n$ satisfies $v \in \mathcal{E}_A(-2)$ and $v \in \mathcal{E}_B(5)$. Show that v is an eigenvector of $M = A^2 + AB - I_n$ and identify the corresponding eigenvalue.

Solution. The given information tells us that $Av = -2 \cdot v$ and $Bv = 5 \cdot v$. It follows that

$$M\boldsymbol{v} = (A^2 + AB - I_n)\boldsymbol{v}$$

= $A^2\boldsymbol{v} + AB\boldsymbol{v} - \boldsymbol{v}$
= $(-2) \cdot A\boldsymbol{v} + 5 \cdot A\boldsymbol{v} - \boldsymbol{v}$
= $(-2)^2 \cdot \boldsymbol{v} - 10 \cdot \boldsymbol{v} - \boldsymbol{v}$
= $-7 \cdot \boldsymbol{v}$

This shows that $\boldsymbol{v} \in \mathcal{E}_M(-7)$.

Problem 4. Suppose that A is a matrix whose null space and left null space are given by

× 7

$$\operatorname{Null}(A) = \operatorname{Col} \begin{bmatrix} 1 & 0 & 0 & 3\\ 1 & 2 & 0 & 7\\ 2 & 3 & 4 & 32\\ 0 & 0 & 1 & 5\\ -1 & -1 & -2 & -15 \end{bmatrix}$$

$$\operatorname{Null}(A^{\intercal}) = \operatorname{Col} \begin{bmatrix} 1 & 0\\ 0 & 1\\ -1 & 1\\ -1 & 1 \end{bmatrix}$$

Note here that K is 5×4 and that C is 4×2 .

(6 pts) (a) Explain why { $\begin{bmatrix} 1 & 0 & -1 & -1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ } is a basis of Null(A^{T}).

Solution. The second equation tells us that $\operatorname{Null}(A^{\intercal}) = \operatorname{Span}\{\begin{bmatrix} 1 & 0 & -1 & -1 \end{bmatrix}^{\intercal}, \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^{\intercal}\}$. These two vectors are independent because they are not multiples of each other. Therefore, these two vectors form a basis of $\operatorname{Null}(A^{\intercal})$.

(6 pts) (b) Find all values of c for which $A\mathbf{x} = \begin{bmatrix} 2 & c & -3 & 5 \end{bmatrix}^{\mathsf{T}}$ is consistent. Clearly explain your reasoning to receive credit.

Solution. This is equivalent to requiring that $\begin{bmatrix} 2 & c & -3 & 5 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Col}(A)$. Since $\operatorname{Col}(A) = \operatorname{Null}(A^{\mathsf{T}})^{\perp}$, we must have

 $0 = \langle \begin{bmatrix} 2 & c & -3 & 5 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & 0 & -1 & -1 \end{bmatrix}^{\mathsf{T}} \rangle = 0 \qquad 0 = \langle \begin{bmatrix} 2 & c & -3 & 5 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}} \rangle = c + 2$

The only meaningful equation here is 0 = c + 2, which gives c = -2.

(10 pts) (c) Fill in every missing label in the picture of the four fundamental subspaces below, including the dimension of each fundamental subspace.

Solution. We know that $\operatorname{Null}(A) = \operatorname{Col}(K) \subset \mathbb{R}^5$ because K is 5×4 . We also know that $\operatorname{Null}(A^{\intercal}) = \operatorname{Col}(C) \subset \mathbb{R}^4$ because C is 4×2 . We are told in part (a) that $\{\begin{bmatrix} 1 & 0 & -1 & -1 \end{bmatrix}^{\intercal}, \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^{\intercal}\}$ is a basis of $\operatorname{Null}(A^{\intercal})$ which means that dim $\operatorname{Null}(A^{\intercal}) = 2$. The rest of the dimensions follow from the rank-nullity theorem.

(5 pts) (d) Does K have independent or dependent columns? Clearly explain your reasoning to receive credit. **Solution.** We know that $rank(K) = \dim Col(K) = \dim Null(A) = 3$ from our picture. But K has 4 which means K does not have full column rank. This means that the columns of K are dependent. **Problem 5.** Suppose that A is a 4×3 matrix and that the projection matrix P onto Col(A) satisfies the following equations.

$$\begin{bmatrix} P \end{bmatrix} \begin{bmatrix} -1 \\ -3 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} P \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} P \end{bmatrix} \begin{bmatrix} -1 \\ -8 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} P \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \\ -4 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

(6 pts) (a) Which of the following vectors belongs to $\mathcal{E}_P(1)$? Select all that apply.

- $\sqrt{\begin{bmatrix} -1 & -3 & -1 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}} \sqrt{\begin{bmatrix} -1 & -8 & 0 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 2 & 1 & 1 & -4 \end{bmatrix}^{\mathsf{T}}$ (6 pts) (b) Which of the following vectors belongs to Null(A^{T})? Select all that apply.
 - $\bigcirc \begin{bmatrix} -1 & -3 & -1 & 0 \end{bmatrix}^{\mathsf{T}} \quad \checkmark \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \quad \bigcirc \begin{bmatrix} -1 & -8 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \quad \bigcirc \begin{bmatrix} 2 & 1 & 1 & -4 \end{bmatrix}^{\mathsf{T}}$
- (6 pts) (c) Find the projection of $\boldsymbol{b} = \begin{bmatrix} 2 & 1 & 1 & -4 \end{bmatrix}^{\mathsf{T}}$ onto $\operatorname{Null}(A^{\mathsf{T}})$. Clearly explain your reasoning to receive credit. Solution. The orthogonality conditions say that

$$P_{\operatorname{Null}(A^{\intercal})}\boldsymbol{b} = (I-P)\boldsymbol{b} = \boldsymbol{b} - P\boldsymbol{b} = \begin{bmatrix} 2\\1\\1\\-4 \end{bmatrix} - \begin{bmatrix} 2\\1\\0\\-4 \end{bmatrix} = \begin{bmatrix} 0\\0\\-4\\-4 \end{bmatrix}$$

(5 pts) (d) Find the error E in using the technique of least squares to approximate a solution to the system Ax = b where $b = \begin{bmatrix} 2 & 1 & 1 & -4 \end{bmatrix}^{\mathsf{T}}$. Clearly explain your reasoning to receive credit.

Solution. By definition, we have

$$E = \|\boldsymbol{b} - A\hat{x}\|^{2} = \|\boldsymbol{b} - P\boldsymbol{b}\|^{2} = \left\| \begin{bmatrix} 2\\1\\-4\\-4 \end{bmatrix} - \begin{bmatrix} 2\\1\\1\\0\\\end{bmatrix} \right\|^{2} = 16$$