Math 218D: Week 6 Discussion

Study Copy

October 5, 2023

Problem 1. To verify if $v \in Col(A)$ we must check the equation _

Problem 2. Determine if $\boldsymbol{v} = \begin{bmatrix} 6\\12\\2 \end{bmatrix}$ is in the column space of $A = \begin{bmatrix} 1 & -3 & 4\\2 & -6 & 8\\-3 & 9 & -12 \end{bmatrix}$.

Problem 3. To verify if $v \in \text{Span}\{v_1, \ldots, v_k\}$ we must check ______ **Problem 4.** Determine if $\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \in \text{Span}\{\begin{bmatrix} 1 & -3 & -3 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & 4 & 3 \end{bmatrix}^{\mathsf{T}}\}.$ **Problem 5.** Suppose that A is a 3×3 matrix satisfying the following three equations.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \quad \operatorname{rref} \begin{bmatrix} A & \begin{vmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & | \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \quad \operatorname{rref} \begin{bmatrix} A^{\mathsf{T}} & \begin{vmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & | & -11 \\ 0 & 1 & 1 & | & -7 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Note that $\operatorname{rref}(A)$ and $\operatorname{rref}(A^{\intercal})$ can be inferred from the second and third equations above.

- (a) The vector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space. \bigcirc The null space. \bigcirc The row space. \bigcirc The column space. \bigcirc The left null space.
- (b) The vector $\begin{bmatrix} 1 & -2 & -1 \end{bmatrix}^{\mathsf{T}}$ belongs to exactly one of the four fundamental subspaces of A. Select this space.

○ The null space. ○ The row space. ○ The column space. ○ The left null space. (c) Determine if $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{\intercal} \in \text{Null}(A)$.

(d) Find a nonzero vector in the left null space of A.

Math 218D: Week 7 Discussion

STUDY COPY

October 12, 2023

Problem 1. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \ldots, v_n\}$ linearly dependent?

Problem 2. By definition, what does it mean to call a list of vectors $\{v_1, v_2, \ldots, v_n\}$ linearly independent?

Problem 3. Determine if $\{\begin{bmatrix} 1 & -3 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -4 & 13 & -3 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 5 & -17 & 3 \end{bmatrix}^{\mathsf{T}}\}$ is independent.

Problem 4. Suppose that $v_1, v_2, v_3 \in \mathbb{R}^n$ and let A be an $m \times n$ matrix such that $\{Av_1, Av_2, Av_3\}$ is linearly independent. Show that $\{v_1, v_2, v_3\}$ is linearly independent.

Problem 5. The columns of a matrix A are independent if and only if ______

Problem 6. Consider the calculations

$$\operatorname{rref} \begin{bmatrix} 9 & 4 & 4\\ -36 & -16 & -16\\ 20 & 9 & 4\\ -49 & -22 & -12 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 20\\ 0 & 1 & -44\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \qquad \operatorname{rref} \begin{bmatrix} 9 & -36 & 20 & -49\\ 4 & -16 & 9 & -22\\ 4 & -16 & 4 & -12 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 0 & -1\\ 0 & 0 & 1 & -2\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

_____.

(a) Find the pivot solutions to Av = O. These vectors form a basis of _

(b) Find the pivot solutions to $A^{\intercal}v = O$. These vectors form a basis of _

(c) Find the pivot columns of A. These vectors form a basis of _____

(d) Find the nonzero rows of rref(A). These vectors form a basis of _____

- (e) The pivot columns of A^{\intercal} form a basis of _____
- (f) The nonzero rows of $\operatorname{rref}(A^{\intercal})$ form a basis of _____.
- (g) Fill in the blanks in the figure below.

Math 218D: Week 8 Discussion

Study Copy

October 19, 2023

Problem 1. Suppose that A is a matrix satisfying

 $\operatorname{Col}(A^{\mathsf{T}}) = \operatorname{Span}\{\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 & 3 & 2 & 4 \end{bmatrix}^{\mathsf{T}}\} \qquad \operatorname{Null}(A^{\mathsf{T}}) = \operatorname{Span}\{\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^{\mathsf{T}}\}$

(a) Draw the picture of the four fundamental subspaces of A, including their dimensions

- (b) Determine if $\boldsymbol{v} = \begin{bmatrix} 1 & 0 & 2 & -1 \end{bmatrix}^{\mathsf{T}}$ satisfies $A\boldsymbol{v} = \boldsymbol{O}$.
- (c) Determine if $\boldsymbol{b} = \begin{bmatrix} 3 & 5 & 2 \end{bmatrix}^{\mathsf{T}}$ makes the system $A\boldsymbol{x} = \boldsymbol{b}$ consistent.

(d) Explain why Null(A) \neq Span{ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ }.

Problem 2. Suppose that an $n \times n$ matrix P is symmetric $(P^{\intercal} = P)$ and idempotent $(P^2 = P)$. (a) Show that the matrix $I_n - P$ is symmetric.

(b) Show that the matrix $I_n - P$ is idempotent.

(c) Show that every vector $\boldsymbol{v} \in \mathbb{R}^n$ satisfies the equation

$$\langle P\boldsymbol{v}, (I_n - P)\boldsymbol{v} \rangle = 0$$

Hint. Start with the adjoint formula.

Problem 3. Let $\mathbb{1}_d$ be the vector in \mathbb{R}^d whose every coordinate is equal to one (for example $\mathbb{1}_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$ and $\mathbb{1}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$).

(a) Find the projection matrix P onto $V = \text{Span}\{\mathbb{1}_3\}$.

(b) Find the projection of $\boldsymbol{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{\mathsf{T}}$ onto $V = \operatorname{Span}\{\mathbb{1}_3\}$.

(c) Describe what happens when we project $\boldsymbol{v} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^{\mathsf{T}}$ onto $V = \operatorname{Span}\{\mathbb{1}_3\}$.