Math 218D: Week 10 Discussion
 Study Copy

November 2, 2023

Problem 1. Calculate $\left|\begin{array}{rrrr}1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52\end{array}\right|$.

Problem 2. Consider the following matrix factorization

Calculate $\operatorname{det}(A)$.
\qquad and $\operatorname{det}(A B)=$ \qquad
Problem 3. For $n \times n$ matrices A and $B, \operatorname{det}\left(A^{\top}\right)=$.

Problem 4. If possible, find 3×3 matrices A and B satisfying $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$. If this is not possible, then explain why.

Problem 5. The (i, j) minor of A is $M_{i j}=$ \qquad and the (i, j) cofactor is $C_{i j}=$ \qquad -.

Problem 6. Suppose that $\operatorname{det}(A)=35$ and that each (i, j) minor of A is the (i, j) entry of $M=\left[\begin{array}{rrrr}-45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ 45 & 16 & 34 & 5 \\ -10 & -2 & -13 & 5\end{array}\right]$.
(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.
(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A \boldsymbol{x}=\boldsymbol{b}$ for $\boldsymbol{b}=\left[\begin{array}{llll}0 & 7 & 0 & 0\end{array}\right]^{\top}$.

Problem 7. Suppose that λ is an eigenvalue of an $n \times n$ matrix A. Then $\operatorname{det}\left(\lambda \cdot I_{n}-A\right)=$

Math 218D: Week 11 Discussion
 Study Copy

November 9, 2023

Problem 1. The reciprocal of $z=7-9 i$ is $1 / z=$ \qquad $+$ \qquad
Problem 2. Consider the vectors $\boldsymbol{v}=\left[\begin{array}{ll}1+i & 5\end{array}\right]^{\top}$ and $\boldsymbol{w}=\left[\begin{array}{lll}1-3 i & 2+i\end{array}\right]^{\top}$ and the matrix $A=\left[\begin{array}{lll}2 \\ 0\end{array}{ }_{1}^{1+i} \quad \begin{array}{ll}-1 \\ \hline\end{array}\right]$. (a) Calculate $\|\boldsymbol{v}\|$.
(b) Calculate $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.
(c) Calculate $A^{*} \boldsymbol{v}$.

Problem 3. We call a matrix A Hermitian if \qquad . We call A unitary if \qquad ـ.

Problem 4. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 5. Suppose that U is $n \times n$ unitary and that $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{C}^{n}$. Show that $\langle U \boldsymbol{v}, U \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.

Problem 6. The polynomial

$$
f(t)=t^{4}-2 t^{3}-t^{2}+t-14
$$

has four distinct roots r_{1}, r_{2}, r_{3}, and r_{4}.
(a) $r_{1}+r_{2}+r_{3}+r_{4}=$ \qquad and $r_{1} r_{2} r_{3} r_{4}=$ \qquad
(b) Calculate $\left(1-r_{1}\right)\left(1-r_{2}\right)\left(1-r_{3}\right)\left(1-r_{4}\right)$.

Problem 7. Let r_{1} and r_{2} be the roots of

$$
f(t)=-9 t^{2}-2 t-1
$$

Calculate $r_{1}^{2}+r_{2}^{2}$.
Hint. Consider $\left(r_{1}+r_{2}\right)^{2}$.

Problem 8. Suppose that A is a matrix whose characteristic polynomial factors as $\chi_{A}(t)=(t-11)^{7}(t-13)^{5}(t-14)^{2}$
Calculate $\chi_{M}(3)$ where $M=A-9 I$.

Math 218D: Week 12 Discussion
 Study Copy

November 16, 2023

Problem 1. Consider the equation

$$
\left[\right]=\left[\begin{array}{rrrr}
18 & 10 & -5 & 0 \\
-10 & * & 8 & 5 \\
-6 & -28 & -14 & -14 \\
-11 & -30 & -11 & -10
\end{array}\right]\left[\begin{array}{rrrr}
-1 & * & -7 & -1 \\
0 & 0 & * & * \\
-1 & 6 & -1 & -6 \\
* & * & 2 & -1
\end{array}\right]\left[\begin{array}{rrrrr}
11 & X^{-1} & 0 & 3 \\
* & -7 & * & -3 \\
-10 & * & * & -3 \\
3 & 3 & * & *
\end{array}\right]
$$

where the entries marked $*$ are unknown. Find the missing entry of A.

Problem 2. Suppose that A has eigenspaces given by

$$
\mathcal{E}_{A}(7)=\operatorname{Span}\left\{\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{A}(1)=\operatorname{Span}\left\{\left[\begin{array}{lll}
-2 & -5 & -5
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{A}(-1)=\operatorname{Span}\left\{\left[\begin{array}{lll}
-3 & -7 & -9
\end{array}\right]^{\top}\right\}
$$

Calculate $A^{2021} \boldsymbol{v}$ for $\boldsymbol{v}=[0$

Problem 3. Consider the factorization

$$
\left[\begin{array}{rr}
-233 & 693 \\
-84 & 250
\end{array}\right]=\left[\begin{array}{rr}
3 & 11 \\
1 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 0 \\
0 & 19
\end{array}\right]\left[\begin{array}{rr}
3 & 11 \\
1 & 4
\end{array}\right]^{-1}
$$

(a) $\operatorname{det}(A)=$
(b) Find the solution $\boldsymbol{u}(t)$ to the initial value problem $d \boldsymbol{u} / d t=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$.

Problem 4. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 5. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$
\mathcal{E}_{S}(-3)=\operatorname{Span}\left\{\left[\begin{array}{llll}
1 & -2 & 0 & 2
\end{array}\right]^{\top},\left[\begin{array}{llll}
-1 & -3 & -2 & 2
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{S}(5)=\operatorname{Span}\left\{\left[\begin{array}{llll}
0 & 2 & -1 & 2
\end{array}\right]^{\top}\right\} \quad \mathcal{E}_{S}(9)=?
$$

Find a basis of $\mathcal{E}_{S}(9)$.

