Math 218D: Week 10 Discussion

STUDY COPY

November 2, 2023

Problem 1. Calculate $\begin{bmatrix} 1 & -9 & 3 & -8 \\ 9 & -81 & 27 & -70 \\ -5 & 45 & -14 & 29 \\ -7 & 60 & -16 & 52 \end{bmatrix}.$

Problem 2. Consider the following matrix factorization

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & 1 & 6 \\ -1 & -4 & 1 & -1 & -4 \\ -2 & -10 & 0 & 2 & -1 \\ 3 & 3 & 1 & -2 & -3 \\ 3 & -1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} L & U & U \\ -1/4 & 1 & 0 & 0 & 0 & 0 \\ -1/8 & 2^9/74 & 1 & 0 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 0 & 4/37 & -1 & 1 & 0 \\ 3/8 & 1^7/74 & -8/19 & -12/19 & 1 \end{bmatrix} \begin{bmatrix} 8 & 3 & 1 & -2 & -3 \\ 0 & -37/4 & 1/4 & 3/2 & -7/4 \\ 0 & 0 & 3^8/37 & -68/37 & -273/74 \\ 0 & 0 & 0 & 0 & -1 & 5/2 \\ 0 & 0 & 0 & 0 & 0 & 97/38 \end{bmatrix}$$

Calculate det(A).

Problem 3. For $n \times n$ matrices A and B, $\det(A^{\mathsf{T}}) = \underline{\hspace{1cm}}$ and $\det(AB) = \underline{\hspace{1cm}}$.

Problem 4. If possible, find 3×3 matrices A and B satisfying $\det(A + B) \neq \det(A) + \det(B)$. If this is not possible, then explain why.

Problem 5. The (i,j) minor of A is $M_{ij} =$ _____ and the (i,j) cofactor is $C_{ij} =$ _____.

Problem 6. Suppose that det(A) = 35 and that each (i, j) minor of A is the (i, j) entry of $M = \begin{bmatrix} -45 & -9 & -41 & 5 \\ -10 & 5 & 15 & 5 \\ 45 & 16 & 34 & -5 \\ -10 & -2 & -13 & 5 \end{bmatrix}$

(a) Find the cofactor matrix C of A and the adjugate matrix $\operatorname{adj}(A)$.

(b) Find three independent vectors orthogonal to the first column of A.

(c) Solve $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} 0 & 7 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$.

Problem 7. Suppose that λ is an eigenvalue of an $n \times n$ matrix A. Then $\det(\lambda \cdot I_n - A) = \underline{\hspace{1cm}}$

Math 218D: Week 11 Discussion

STUDY COPY

November 9, 2023

Problem 1. The reciprocal of z = 7 - 9i is $1/z = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} i$. **Problem 2.** Consider the vectors $\mathbf{v} = \begin{bmatrix} 1+i & 5 \end{bmatrix}^{\mathsf{T}}$ and $\mathbf{w} = \begin{bmatrix} 1-3i & 2+i \end{bmatrix}^{\mathsf{T}}$ and the matrix $A = \begin{bmatrix} 2 & 1+i & -1 \\ 0 & 1 & 3-2i \end{bmatrix}$.

(a) Calculate $\|\mathbf{v}\|$.

(b) Calculate $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$.

(c) Calculate A^*v .

Problem 3. We call a matrix A Hermitian if ______. We call A unitary if _____.

Problem 4. Suppose that H is Hermitian. Show that every diagonal entry of H is a real number.

Problem 5. Suppose that U is $n \times n$ unitary and that $v, w \in \mathbb{C}^n$. Show that $\langle Uv, Uw \rangle = \langle v, w \rangle$.

Problem 6. The polynomial

$$f(t) = t^4 - 2t^3 - t^2 + t - 14$$

has four distinct roots r_1 , r_2 , r_3 , and r_4 .

- (a) $r_1 + r_2 + r_3 + r_4 =$ _____ and $r_1 r_2 r_3 r_4 =$ _____
- (b) Calculate $(1-r_1)(1-r_2)(1-r_3)(1-r_4)$.

Problem 7. Let r_1 and r_2 be the roots of

$$f(t) = -9t^2 - 2t - 1$$

Calculate $r_1^2 + r_2^2$.

Hint. Consider $(r_1 + r_2)^2$.

Problem 8. Suppose that A is a matrix whose characteristic polynomial factors as

$$\chi_A(t) = (t-11)^7 (t-13)^5 (t-14)^2$$

Calculate $\chi_M(3)$ where M = A - 9I.

Math 218D: Week 12 Discussion

STUDY COPY

November 16, 2023

Problem 1. Consider the equation

$$\begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} = \begin{bmatrix} 18 & 10 & -5 & 0 \\ -10 & * & 8 & 5 \\ -6 & -28 & -14 & -14 \\ -11 & -30 & -11 & -10 \end{bmatrix} \begin{bmatrix} -1 & * & -7 & -1 \\ 0 & 0 & * & * \\ -1 & 6 & -1 & -6 \\ * & * & 2 & -1 \end{bmatrix} \begin{bmatrix} 11 & 10 & 0 & 3 \\ * & -7 & * & -3 \\ -10 & * & * & -3 \\ 3 & 3 & * & * \end{bmatrix}$$

where the entries marked * are unknown. Find the missing entry of A.

Problem 2. Suppose that A has eigenspaces given by

$$\mathcal{E}_A(7) = \operatorname{Span}\left\{\begin{bmatrix}1 & 3 & 0\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(1) = \operatorname{Span}\left\{\begin{bmatrix}-2 & -5 & -5\end{bmatrix}^{\mathsf{T}}\right\} \quad \mathcal{E}_A(-1) = \operatorname{Span}\left\{\begin{bmatrix}-3 & -7 & -9\end{bmatrix}^{\mathsf{T}}\right\}$$
Calculate $A^{2021}\boldsymbol{v}$ for $\boldsymbol{v} = \begin{bmatrix}0 & -1 & 3\end{bmatrix}^{\mathsf{T}}$.

Problem 3. Consider the factorization

$$\begin{bmatrix} -233 & 693 \\ -84 & 250 \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 19 \end{bmatrix} \begin{bmatrix} 3 & 11 \\ 1 & 4 \end{bmatrix}^{-1}$$

- $(a) \det(A) = \underline{\hspace{1cm}}$
- (b) Find the solution u(t) to the initial value problem du/dt = Au with $u(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}$.

Problem 4. What is a spectral factorization? Which matrices have spectral factorizations?

Problem 5. Suppose S is a real-symmetric matrix whose eigenspaces are given by

$$\mathcal{E}_S(-3) = \operatorname{Span}\{\begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -1 & -3 & -2 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(5) = \operatorname{Span}\{\begin{bmatrix} 0 & 2 & -1 & 2 \end{bmatrix}^{\mathsf{T}}\} \quad \mathcal{E}_S(9) = ?$$

Find a basis of $\mathcal{E}_S(9)$.