Duke University

Math 218D-2

Matrices and Vectors

Exam I

Name:
NetID:

Solutions

I have adhered to the Duke Community Standard in completing this exam.
Signature:

September 29, 2023

- There are 100 points and 6 problems on this 50 -minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

DukeMATH

Problem 1. This figure depicts displacement vectors $\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{x}$, and \boldsymbol{y} between points P, Q, R, and S in \mathbb{R}^{5} (so each of P, Q, R, and S has five coordinates). Throughout this problem, assume that A is a matrix satisfying $A \boldsymbol{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $A \boldsymbol{w}=\left[\begin{array}{l}7 \\ 1\end{array}\right]$.
(3 pts) (a) Which point is the tail of $\boldsymbol{v} ? ~ \sqrt{ } P \bigcirc$$Q$$R$$S$

(3 pts) (b) Only one of the following formulas for \boldsymbol{w} is correct. Select this formula.$\boldsymbol{w}=\overrightarrow{Q R}$$\boldsymbol{w}=-\overrightarrow{R Q}$$\boldsymbol{w}=\vec{Q}$ $\sqrt{ } \boldsymbol{w}=\overrightarrow{R Q}$$\boldsymbol{w}=\vec{R}$
(3 pts) (c) Only one of the following formulas for $\overrightarrow{R P}$ is correct. Select this formula.

$$
\bigcirc \overrightarrow{R P}=\boldsymbol{x}+\boldsymbol{y} \quad \sqrt{ } \quad \overrightarrow{R P}=\boldsymbol{x}-\boldsymbol{y} \quad \bigcirc \overrightarrow{R P}=-\boldsymbol{x}-\boldsymbol{y} \quad \bigcirc \overrightarrow{R P}=\boldsymbol{w}+\boldsymbol{v} \quad \bigcirc \overrightarrow{R P}=\boldsymbol{y}
$$

(3 pts) (d) The number of rows of A is \qquad and the number of columns of A is \qquad 5 .
(4 pts) (e) If we assumed that P and Q have coordinates $P(1,1,1,1,1)$ and $Q(1,1,2,1,1)$, then only one of the following statements is guaranteed to be correct. Select this statement.The second column of A is $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
The second column of A is $\left[\begin{array}{l}7 \\ 1\end{array}\right]$
The third column of A is $\left[\begin{array}{l}-2 \\ -3\end{array}\right]$

The third column of A is $\left[\begin{array}{l}7 \\ 1\end{array}\right] \quad \sqrt{ }$ The third column of A is $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(8 pts) (f) Calculate the matrix-vector product $A(\boldsymbol{x}-\boldsymbol{y}+\boldsymbol{w})$. Clearly explain your reasoning to receive credit.
Solution. The diagram demonstrates that $\boldsymbol{x}-\boldsymbol{y}=\overrightarrow{R P}=\boldsymbol{w}-\boldsymbol{v}$, which implies

$$
A(\boldsymbol{x}-\boldsymbol{y}+\boldsymbol{w})=A(\boldsymbol{w}-\boldsymbol{v}+\boldsymbol{w})=A(2 \cdot \boldsymbol{w}-\boldsymbol{v})=2 \cdot A \boldsymbol{w}-A \boldsymbol{v}=2 \cdot\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
12 \\
-1
\end{array}\right]
$$

Problem 2. The equation below depicts the result of multiplying the incidence matrix A of a digraph G by another matrix B.

$$
A\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 7 & 3 \\
3 & 0 & 1 & 1 & 5 & 9 \\
0 & 0 & 1 & 0 & 7 & 0 \\
2 & 1 & 1 & 0 & 7 & 6 \\
0 & 0 & 1 & 0 & 7 & 0
\end{array}\right]=\left[\begin{array}{rrrrrr}
-2 & 0 & -1 & -1 & -5 & * \\
0 & 0 & 0 & 0 & 0 & * \\
3 & 0 & 1 & 1 & 5 & * \\
0 & 0 & 1 & 0 & 7 & * \\
-1 & 0 & -1 & 0 & -7 & *
\end{array}\right]
$$

Note that the entries in the last column of $A B$ are unknown and marked as $*$.
(6 pts) (a) The number of nodes in G is \qquad 5 , the number of arrows in G is \qquad and $\chi(G)=$ \qquad -.
(5 pts) (b) Which of the following is the correct visualization of the second arrow a_{2} in the digraph G ?

$\bigcirc \quad v_{2}-a_{2} \rightarrow v_{3}$
\bigcirc

(4 pts) (c) Suppose we make G a weighted digraph by assigning a weight of 5 to the second arrow a_{2} and a weight of 7 to all of the other arrows. Then the net flow through the last node of G is $\quad-7$.
(4 pts) (d) What is the missing column of $A B$?

$$
\left[\begin{array}{r}
-2 \\
0 \\
3 \\
0 \\
-1
\end{array}\right] \bigcirc\left[\begin{array}{l}
3 \\
9 \\
0 \\
6 \\
0
\end{array}\right] \checkmark \sqrt{ }\left[\begin{array}{r}
-6 \\
0 \\
9 \\
0 \\
-3
\end{array}\right] \bigcirc\left[\begin{array}{l}
1 \\
3 \\
0 \\
2 \\
0
\end{array}\right] \bigcirc \text { not enough information to tell }
$$

(5 pts) (e) Which of these statements best articulates the relationship of A to the terms "singular" and "nonsingular"? $\sqrt{ } A$ is singular. $\bigcirc A$ is nonsingular. $\bigcirc A$ is neither singular nor nonsingular.
$\bigcirc A$ is either singular or nonsingular, but we do not have enough information to decide which.
(12 pts) Problem 3. Select every matrix below whose rank is two (each option is worth 2 pts).

$$
\begin{aligned}
& \sqrt{ }\left[\begin{array}{rrrrrrrr}
0 & 0 & 8 & 1 & 47 & 73 & 80 & 42 \\
0 & 0 & 0 & 6 & 42 & 54 & 48 & 12 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \bigcirc\left[\begin{array}{rrrrrr}
1 & 4 & 3 & 2 & 9 \\
1 & 4 & 3 & 2 & 9 \\
1 & 4 & 3 & 2 & 9 \\
1 & 4 & 3 & 2 & 9 \\
2 & 8 & 6 & 4 & 18
\end{array}\right] \\
& {\left[\begin{array}{rrrrrrrrrr}
2 & 2 & 3 & 4 & 2 & 2 & 5 & 65 & 76 & 1 \\
0 & 0 & 3 & 4 & 6 & 7 & 5 & 122 & 100 & 7 \\
0 & 0 & 0 & 7 & 4 & 1 & 8 & 86 & 71 & 1 \\
0 & 0 & 0 & 0 & 7 & 3 & 1 & 69 & 42 & 7 \\
0 & 0 & 0 & 0 & 0 & 9 & 2 & 75 & 40 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 8 & 48 & 16 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

(12 pts) Problem 4. An $n \times n$ matrix M is called idempotent if $M^{2}=M$.
Suppose that $A=X M X^{-1}$ where M is idempotent. Show that A is idempotent. You must avoid circular logic to receive credit.

Solution. We are given $A=X M X^{-1}$ where M is idempotent, which means that $M^{2}=M$. We wish to demonstrate that A is idempotent, which means we want $A^{2}=A$. This is then accomplished with

$$
A^{2}=\left(X M X^{-1}\right)\left(X M X^{-1}\right)=X M X^{-1} X M X^{-1}=X M I_{n} M X^{-1}=X M M X^{-1}=X M X^{-1}=A
$$

Problem 5. The data below depicts the result of representing the Gauß-Jordan algorithm applied to a matrix A with elementary matrices.

$$
\left[\begin{array}{rrrr}
1 & 0 & E_{3} & 0 \\
0 & 1 & 0 & -7 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llrrr}
E_{2}
\end{array}\right]\left[\begin{array}{rrrrrr}
1 & 0 & 6 & 9 & 0 & 0 \\
0 & -5 & -10 & -25 & 0 & -35 \\
0 & 1 & 2 & 5 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 6 & 9 & 0 \\
0 & 1 & 2 & 5 & 0 \\
0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Note that the elementary matrix E_{1} is not explicitly described.
(4 pts) (a) The second elementary row operation used in the algorithm was \qquad . You must use the proper notation we learned in class to represent this elementary row operation.
(8 pts) (b) Find E_{1}. Clearly explain your reasoning to receive credit.
Solution. This is the elementary matrix corresponding to the first elementary row operation in the GaußJordan algorithm when applied to A, which is $-\frac{1}{5} \cdot \boldsymbol{r}_{2} \rightarrow \boldsymbol{r}_{2}$. The elementary matrix we are looking for is obtained by applying this operation to the identity matrix, which gives

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{-1 / 5 \cdot \boldsymbol{r}_{2} \rightarrow \boldsymbol{r}_{2}}\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 / 5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Problem 6. The data below depicts a $P A=L U$ factorization along with the inverse marix L^{-1} and a vector \boldsymbol{b}.
$\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}\end{array}\right.$
$A]=[$
$L \quad\left[\begin{array}{rrrrr}1 & 3 & 9 & 19 & 4 \\ 0 & 0 & 5 & 10 & 6 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
L^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 \\
1 & 2 & 1 & 3
\end{array}\right]
$$

$$
\boldsymbol{b}=\left[\begin{array}{r}
0 \\
h-1 \\
0 \\
h+1
\end{array}\right]
$$

Note that A and L are not explicitly described, and that \boldsymbol{b} is defined in terms of a constant h.
$(4 \mathrm{pts})(a) \operatorname{nullity}\left(U^{\top}\right)=$ \qquad
(12 pts) (b) There is only one value of h that makes the system $A \boldsymbol{x}=\boldsymbol{b}$ consistent. Find this value of h. Clearly explain your reasoning to receive credit.
Solution. In class we demonstrated that the solutions to $A \boldsymbol{x}=\boldsymbol{b}$ are the solutions to $U \boldsymbol{x}=\boldsymbol{y}$ where $L \boldsymbol{y}=P \boldsymbol{b}$. Conveniently, we are given L^{-1}, so we can quickly solve $L \boldsymbol{y}=P \boldsymbol{b}$ with

$$
\boldsymbol{y}=\left[\begin{array}{cccc}
1^{L^{-1}} & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 \\
1 & 2 & 1 & 3
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{r}
0 \\
h-1 \\
0 \\
h+1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 \\
1 & 2 & 1 & 3
\end{array}\right]\left[\begin{array}{r}
P \boldsymbol{b} \\
0 \\
0 \\
h-1
\end{array}\right]=\left[\begin{array}{l}
h+1 \\
3 h+3 \\
3 h+3 \\
4 h-2
\end{array}\right]
$$

Now, in augmented form, the system $U \boldsymbol{x}=\boldsymbol{y}$ is

$$
\left[\begin{array}{rrrrr|r}
1 & 3 & 9 & 19 & 4 & h+1 \\
0 & 0 & 5 & 10 & 6 & 3 h+3 \\
0 & 0 & 0 & 0 & 4 & 3 h+3 \\
0 & 0 & 0 & 0 & 0 & 4 h-2
\end{array}\right]
$$

The only way to avoid a pivot in the augmented column is to force $4 h-2=0$, which only works when $h=1 / 2$.

