DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam III

Name:

NetID:

Solutions

I have adhered to the Duke Community Standard in completing this exam. Signature:

December 1, 2023

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. Suppose that A = QR where A, Q, and R are given by

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & a_3 \\ | & | & | \end{bmatrix} \qquad \qquad Q = \frac{1}{h} \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & -x \\ 1 & x & 1 \\ x & -1 & -1 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} \sqrt{5} & 4 & 0 \\ 0 & 2 & 7 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$$

Note that the columns of A have been labeled a_1, a_2, a_3 and that the formula for Q depends on variables x and h.

(6 pts) (a) $\operatorname{rank}(A) = \underline{3}$, $\operatorname{rank}(R) = \underline{3}$, and $\operatorname{rank}(Q) = \underline{3}$

(5 pts) (b) $h = \sqrt{3 + x^2}$ (your formula for h here should depend on the variable x)

(8 pts) (c) $\det(R) = 10$, $\det(RQ^{\intercal}Q) = 10$, and $\det(RA^{\intercal}A) = 1000$

(6 pts) (d) If q_2 is the second column of Q, then $\langle q_2, a_1 \rangle = \underline{0}$, $\langle q_2, a_2 \rangle = \underline{2}$, and $\langle q_2, a_3 \rangle = \underline{7}$.

- (6 pts) (e) If q_1 is the first column of Q, then only one of the following statements is correct. Select this statement. $\bigcirc \operatorname{proj}_{q_1}(a_1) = O \quad \bigcirc \operatorname{proj}_{q_1}(a_2) = O \quad \checkmark \operatorname{proj}_{q_1}(a_3) = O \quad \bigcirc \text{ none of these equations is correct}$
- (10 pts) (f) Find the projection of $\boldsymbol{b} = \begin{bmatrix} h^2 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ onto $\operatorname{Col}(Q)$ (your answer will deend on the variable x). Solution. According to our formulas from class, this is

$$P\boldsymbol{b} = \frac{1}{h} \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & -x \\ 1 & x & 1 \\ x & -1 & -1 \end{bmatrix} \frac{1}{h} \begin{bmatrix} 1 & -1 & 1 & x \\ 1 & 1 & x & -1 \\ -1 & -x & 1 & -1 \end{bmatrix} \begin{bmatrix} h^2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & -x \\ 1 & x & 1 \\ x & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 \\ x \\ x \\ x \end{bmatrix}$$

Problem 2. The following equation depicts $A = XBX^{-1}$, which tells us that A is *similar* to B.

$$\begin{bmatrix} A \\ \end{bmatrix} = \begin{bmatrix} i & 1 & 2 & -1 \\ 1 & i & -1 & -i \\ 1 & -3 & 0 & -1 \\ 1 & -1 & i & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 & 0 & 9 \\ 0 & 7 & i & 4 \\ 0 & 0 & 1 & i \\ 0 & 0 & 0 & i \end{bmatrix} \begin{bmatrix} X^{-1} \\ X^{-1} \end{bmatrix}$$

Note that several entries in X and in B are nonreal complex numbers and that B is upper triangular.

(4 pts) (a) trace(A) = $\underline{13 + i}$ and det(A) = $\underline{35 i}$

- (4 pts) (b) If \boldsymbol{x}_1 is the first column of X and \boldsymbol{x}_2 is the second column of X, then $\langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle = \underline{-4}$.
- (8 pts) (c) Note that $\operatorname{trace}(X) = 2i+2$. This calculation allows us to decide whether or not each of the following statements is true. Select each true statement (each option is worth 2pts).
 - $\bigcirc \lambda = 2i + 2$ is an eigenvalue of X
 - \sqrt{X} has at least one nonreal eigenvalue
 - \bigcirc the coefficient of t^3 in $\chi_X(t)$ is 2i+2
 - \sqrt{X} cannot be similar to any Hermitian matrix

(3 pts) (d) The algebraic multiplicity of every eigenvalue λ of A is $\operatorname{am}_A(\lambda) = \underline{1}$.

(10 pts) (e) Note that $\lambda = 5$ and $\lambda = 7$ are both eigenvalues of A. Find bases of $\mathcal{E}_A(5)$ and $\mathcal{E}_A(7)$ and determine if $\mathcal{E}_A(5) \perp \mathcal{E}_A(7)$.

Hint. Start by finding bases of $\mathcal{E}_B(5)$ and $\mathcal{E}_B(7)$. How do bases of these eigenspaces then translate into bases of $\mathcal{E}_A(5)$ and $\mathcal{E}_A(7)$?

Solution. Note that

$$\mathcal{E}_{B}(5) = \operatorname{Null} \begin{bmatrix} 0 & -2 & 0 & -9 \\ 0 & -2 & -i & -4 \\ 0 & 0 & 4 & -i \\ 0 & 0 & 0 & -i + 5 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\} \quad \mathcal{E}_{B}(7) = \operatorname{Null} \begin{bmatrix} 2 & -2 & 0 & -9 \\ 0 & 0 & -i & -4 \\ 0 & 0 & 6 & -i \\ 0 & 0 & 0 & -i + 7 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

The key statement from class is then that $\mathcal{E}_A(\lambda) = X \cdot \mathcal{E}_B(\lambda)$, which translates as

$$\mathcal{E}_A(5) = \operatorname{Span}\left\{ \begin{bmatrix} X \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} i \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} \qquad \mathcal{E}_A(7) = \operatorname{Span}\left\{ \begin{bmatrix} X \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} i + 1 \\ i + 1 \\ -2 \\ 0 \end{bmatrix} \right\}$$

The issue of whether or not $\mathcal{E}_A(5) \perp \mathcal{E}_A(7)$ is then resolved with a single inner product.

 $\langle \begin{bmatrix} i & 1 & 1 & 1 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} i+1 & i+1 & -2 & 0 \end{bmatrix}^\mathsf{T} \rangle = 0$

It turns out that $\mathcal{E}_A(5)$ and $\mathcal{E}_A(7)$ are indeed orthogonal!

Problem 3. The data below depicts an invertible real-symmetric matrix S, an invertible matrix T, and the characteristic polynomial $\chi_S(t)$ of S (which has been partially factored).

$$S = \begin{bmatrix} 2 & -1 & 1 & 2 \\ -1 & 2 & -1 & -2 \\ 1 & -1 & 2 & 2 \\ 2 & -2 & 2 & 5 \end{bmatrix} \qquad T = \begin{bmatrix} -7 & 1 & -1 & -1 \\ 0 & 1 & 2 & -1 \\ -10 & 14 & 1 & -2 \\ 1 & 5 & -2 & 1 \end{bmatrix} \qquad \chi_S(t) = (t^2 - 2t + 1)(t^2 - 9t + 8)$$

Throughout this problem, let $A = M^{-1}T$ where $M = S^{-1}T$.

(6 pts) (a) Determine the definiteness of S. Clearly explain your reasoning to receive credit.

Solution. We are given $\chi_S(t)$ as the product of quadratics, which can be further factored as

$$\chi_S(t) = (t-8)(t-1)(t-1)(t-1) = (t-1)^3(t-8)$$

This tells us that $\text{E-Vals}(S) = \{1, 8\}$. All eigenvalues of S are positive, so S is positive definite.

(10 pts) (b) Show that A is similar to S.

Hint. This can be done purely with symbols.

Solution. We are given that $A = M^{-1}T$ where $M = S^{-1}T$. We wish to demonstrate that $A = XSX^{-1}$ for some X. To do so, note that

$$A = M^{-1}T = (S^{-1}T)^{-1}T = T^{-1}ST$$

This is $A = XSX^{-1}$ with $X = T^{-1}$, which demonstrates that A is indeed similar to S.

(14 pts) **Problem 4.** Suppose that u(t) is the solution to u' = Au with $u(0) = u_0$ where

$$A = \begin{bmatrix} -1 & 1 \\ 0 & a \end{bmatrix} \qquad \qquad \mathbf{u}_0 = (a+1) \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Note that the matrix A and the vector u_0 are defined in terms of a real variable a which is known to satisfy $a \neq -1$. The two coordinates u_1 and u_2 of u(t) depend both on t and a and can thus be interpreted as scalar fields. Calculate the partial derivatives $\frac{\partial u_1}{\partial a}$ and $\frac{\partial u_2}{\partial a}$.

Solution. The relevant formula from class is $\boldsymbol{u}(t) = \exp(At)\boldsymbol{u}_0$. We hope that A diagonalizes as $A = XDX^{-1}$ so that we could write $\boldsymbol{u}(t) = X \exp(Dt)X^{-1}\boldsymbol{u}_0$.

The good news is that A is upper triangular, so immediately we find $\text{E-Vals}(A) = \{-1, a\}$. The eigenspaces are

$$\mathcal{E}_A(-1) = \operatorname{Null} \begin{bmatrix} 0 & -1 \\ 0 & -a - 1 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \qquad \qquad \mathcal{E}_A(a) = \operatorname{Null} \begin{bmatrix} a \cdot I_2 - A \\ a + 1 & -1 \\ 0 & 0 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ a + 1 \end{bmatrix} \right\}$$

This gives the diagonalization

$$\begin{bmatrix} A \\ -1 & 1 \\ 0 & a \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & a+1 \end{bmatrix} \begin{bmatrix} D \\ -1 & 0 \\ 0 & a \end{bmatrix} \frac{1}{a+1} \begin{bmatrix} x^{-1} \\ a+1 & -1 \\ 0 & 1 \end{bmatrix}$$

The solution $\boldsymbol{u}(t)$ to the initial value problem is then

$$\begin{aligned} \boldsymbol{u}(t) &= \begin{bmatrix} 1 & 1 \\ 0 & a+1 \end{bmatrix} \begin{bmatrix} e^{-t} \\ e^{-t} \end{bmatrix} \frac{1}{a+1} \begin{bmatrix} a+1 & -1 \\ 0 & 1 \end{bmatrix} (a+1) \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ 0 & a+1 \end{bmatrix} \begin{bmatrix} e^{-t} \\ e^{at} \end{bmatrix} \begin{bmatrix} 3a+2 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ 0 & a+1 \end{bmatrix} \begin{bmatrix} (3a+2)e^{-t} \\ e^{at} \end{bmatrix} \\ &= \begin{bmatrix} (3a+2)e^{-t} + e^{at} \\ (a+1)e^{at} \end{bmatrix} \end{aligned}$$

We now have the formulas

$$u_1 = (3 a + 2)e^{-t} + e^{at} \qquad \qquad u_2 = (a+1)e^{at}$$

Our partial derivatives are then

$$\frac{\partial u_1}{\partial a} = 3e^{-t} + te^{at} \qquad \qquad \frac{\partial u_2}{\partial a} = e^{at} + t(a+1)e^{at}$$