Duke University

Math 218D-2

Matrices and Vectors

Exam III

Name:
NetID:

Solutions

I have adhered to the Duke Community Standard in completing this exam.
Signature:

December 1, 2023

- There are 100 points and 4 problems on this 50 -minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

DukeMATH

Problem 1. Suppose that $A=Q R$ where A, Q, and R are given by

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3} \\
\mid & \mid & \mid
\end{array}\right] \quad Q=\frac{1}{h}\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & -x \\
1 & x & 1 \\
x & -1 & -1
\end{array}\right] \quad R=\left[\begin{array}{rrr}
\sqrt{5} & 4 & 0 \\
0 & 2 & 7 \\
0 & 0 & \sqrt{5}
\end{array}\right]
$$

Note that the columns of A have been labeled $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ and that the formula for Q depends on variables x and h.
(6 pts) (a) $\operatorname{rank}(A)=\xrightarrow{3}, \operatorname{rank}(R)=3$
(5 pts) (b) $h=$ \qquad (your formula for h here should depend on the variable x)
$(8 \mathrm{pts})(c) \operatorname{det}(R)=$ \qquad , $\operatorname{det}\left(R Q^{\boldsymbol{\top}} Q\right)=$ \qquad , and $\operatorname{det}\left(R A^{\top} A\right)=$ \qquad
$(6 \mathrm{pts})(d)$ If \boldsymbol{q}_{2} is the second column of Q, then $\left\langle\boldsymbol{q}_{2}, \boldsymbol{a}_{1}\right\rangle=$ \qquad , $\left\langle\boldsymbol{q}_{2}, \boldsymbol{a}_{2}\right\rangle=$ \qquad , and $\left\langle\boldsymbol{q}_{2}, \boldsymbol{a}_{3}\right\rangle=$ \qquad
(6 pts) (e) If \boldsymbol{q}_{1} is the first column of Q, then only one of the following statements is correct. Select this statement. $\bigcirc \operatorname{proj}_{\boldsymbol{q}_{1}}\left(\boldsymbol{a}_{1}\right)=\boldsymbol{O} \quad \bigcirc \operatorname{proj}_{\boldsymbol{q}_{1}}\left(\boldsymbol{a}_{2}\right)=\boldsymbol{O} \quad \sqrt{ } \operatorname{proj}_{\boldsymbol{q}_{1}}\left(\boldsymbol{a}_{3}\right)=\boldsymbol{O} \quad \bigcirc$ none of these equations is correct
$(10 \mathrm{pts})(f)$ Find the projection of $\boldsymbol{b}=\left[\begin{array}{llll}h^{2} & 0 & 0 & 0\end{array}\right]^{\top}$ onto $\operatorname{Col}(Q)$ (your answer will deend on the variable x).
Solution. According to our formulas from class, this is

$$
\begin{aligned}
\boldsymbol{P} \boldsymbol{b} & =\frac{1}{h}\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & -x \\
1 & x & 1 \\
x & -1 & -1
\end{array}\right] \frac{1}{h}\left[\begin{array}{rrrr}
1 & -1 & 1 & x \\
1 & 1 & x & -1 \\
-1 & -x & 1 & -1
\end{array}\right]\left[\begin{array}{r}
h^{2} \\
0 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & -x \\
1 & x & 1 \\
x & -1 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
3 \\
x \\
x \\
x
\end{array}\right]
\end{aligned}
$$

Problem 2. The following equation depicts $A=X B X^{-1}$, which tells us that A is similar to B.

$$
\left[\begin{array}{l}
A \\
\end{array}\right]=\left[\begin{array}{rrrr}
i & 1 & 2 & -1 \\
1 & i & -1 & -i \\
1 & -3 & 0 & -1 \\
1 & -1 & i & 2
\end{array}\right]\left[\begin{array}{rrrr}
5 & 2 & 0 & 9 \\
0 & 7 & i & 4 \\
0 & 0 & 1 & i \\
0 & 0 & 0 & i
\end{array}\right]\left[\begin{array}{l}
X^{-1} \\
\end{array}\right]
$$

Note that several entries in X and in B are nonreal complex numbers and that B is upper triangular.
$(4 \mathrm{pts})(a) \operatorname{trace}(A)=$ \qquad and $\operatorname{det}(A)=$ \qquad
(4 pts) (b) If \boldsymbol{x}_{1} is the first column of X and \boldsymbol{x}_{2} is the second column of X, then $\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\rangle=$ \qquad .
(8 pts) (c) Note that trace $(X)=2 i+2$. This calculation allows us to decide whether or not each of the following statements is true. Select each true statement (each option is worth 2 pts).$\lambda=2 i+2$ is an eigenvalue of X
$\sqrt{ } X$ has at least one nonreal eigenvalue
\bigcirc the coefficient of t^{3} in $\chi_{X}(t)$ is $2 i+2$
$\sqrt{ } X$ cannot be similar to any Hermitian matrix
$(3 \mathrm{pts})(d)$ The algebraic multiplicity of every eigenvalue λ of A is $\mathrm{am}_{A}(\lambda)=$ \qquad .
(10 pts) (e) Note that $\lambda=5$ and $\lambda=7$ are both eigenvalues of A. Find bases of $\mathcal{E}_{A}(5)$ and $\mathcal{E}_{A}(7)$ and determine if $\mathcal{E}_{A}(5) \perp \mathcal{E}_{A}(7)$.
Hint. Start by finding bases of $\mathcal{E}_{B}(5)$ and $\mathcal{E}_{B}(7)$. How do bases of these eigenspaces then translate into bases of $\mathcal{E}_{A}(5)$ and $\mathcal{E}_{A}(7) ?$
Solution. Note that

$$
\mathcal{E}_{B}(5)=\text { Null }\left[\begin{array}{rrrr}
0 & -2 & 0 & -9 \\
0 & -2 & -i & -4 \\
0 & 0 & 4 & -i \\
0 & 0 & 0 & -i+5
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} \mathcal{E}_{B}(7)=\operatorname{Null}\left[\begin{array}{rrrr}
2 & -2 & 0 & -9 \\
0 & 0 & -i & -4 \\
0 & 0 & 6 & -i \\
0 & 0 & 0 & -i+7
\end{array}\right]=\operatorname{Span}\left\{\begin{array}{l}
\\
0
\end{array}\right]
$$

The key statement from class is then that $\mathcal{E}_{A}(\lambda)=X \cdot \mathcal{E}_{B}(\lambda)$, which translates as

$$
\mathcal{E}_{A}(5)=\operatorname{Span}\left\{\left[\begin{array}{l}
\\
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
i \\
1 \\
1 \\
1
\end{array}\right]\right\} \quad \mathcal{E}_{A}(7)=\operatorname{Span}\left\{\left[X \quad\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
i+1 \\
i+1 \\
-2 \\
0
\end{array}\right]\right\}\right.
$$

The issue of whether or not $\mathcal{E}_{A}(5) \perp \mathcal{E}_{A}(7)$ is then resolved with a single inner product.

$$
\left\langle\left[\begin{array}{llll}
i & 1 & 1 & 1
\end{array}\right]^{\top},\left[\begin{array}{llll}
i+1 & i+1 & -2 & 0
\end{array}\right]^{\top}\right\rangle=0
$$

It turns out that $\mathcal{E}_{A}(5)$ and $\mathcal{E}_{A}(7)$ are indeed orthogonal!

Problem 3. The data below depicts an invertible real-symmetric matrix S, an invertible matrix T, and the characteristic polynomial $\chi_{S}(t)$ of S (which has been partially factored).

$$
S=\left[\begin{array}{rrrr}
2 & -1 & 1 & 2 \\
-1 & 2 & -1 & -2 \\
1 & -1 & 2 & 2 \\
2 & -2 & 2 & 5
\end{array}\right] \quad T=\left[\begin{array}{rrrr}
-7 & 1 & -1 & -1 \\
0 & 1 & 2 & -1 \\
-10 & 14 & 1 & -2 \\
1 & 5 & -2 & 1
\end{array}\right] \quad \chi_{S}(t)=\left(t^{2}-2 t+1\right)\left(t^{2}-9 t+8\right)
$$

Throughout this problem, let $A=M^{-1} T$ where $M=S^{-1} T$.
(6 pts) (a) Determine the definiteness of S. Clearly explain your reasoning to receive credit.
Solution. We are given $\chi_{S}(t)$ as the product of quadratics, which can be further factored as

$$
\chi_{S}(t)=(t-8)(t-1)(t-1)(t-1)=(t-1)^{3}(t-8)
$$

This tells us that $\mathrm{E}-\operatorname{Vals}(S)=\{1,8\}$. All eigenvalues of S are positive, so S is positive definite.
(10 pts) (b) Show that A is similar to S.
Hint. This can be done purely with symbols.
Solution. We are given that $A=M^{-1} T$ where $M=S^{-1} T$. We wish to demonstrate that $A=X S X^{-1}$ for some X. To do so, note that

$$
A=M^{-1} T=\left(S^{-1} T\right)^{-1} T=T^{-1} S T
$$

This is $A=X S X^{-1}$ with $X=T^{-1}$, which demonstrates that A is indeed similar to S.
(14 pts) Problem 4. Suppose that $\boldsymbol{u}(t)$ is the solution to $\boldsymbol{u}^{\prime}=A \boldsymbol{u}$ with $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ where

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
0 & a
\end{array}\right] \quad \boldsymbol{u}_{0}=(a+1) \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Note that the matrix A and the vector \boldsymbol{u}_{0} are defined in terms of a real variable a which is known to satisfy $a \neq-1$. The two coordintes u_{1} and u_{2} of $\boldsymbol{u}(t)$ depend both on t and a and can thus be interpreted as scalar fields. Calculate the partial derivatives $\frac{\partial u_{1}}{\partial a}$ and $\frac{\partial u_{2}}{\partial a}$.

Solution. The relevant formula from class is $\boldsymbol{u}(t)=\exp (A t) \boldsymbol{u}_{0}$. We hope that A diagonalizes as $A=X D X^{-1}$ so that we could write $\boldsymbol{u}(t)=X \exp (D t) X^{-1} \boldsymbol{u}_{0}$.
The good news is that A is upper triangular, so immediately we find $\mathrm{E}-\operatorname{Vals}(A)=\{-1, a\}$. The eigenspaces are

$$
\mathcal{E}_{A}(-1)=\operatorname{Null}\left[\begin{array}{lr}
0 & -I_{2}-A \\
0 & -a-1
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \quad \mathcal{E}_{A}(a)=\operatorname{Null}\left[\begin{array}{rr}
a+I_{2}-A \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{r}
1 \\
a+1
\end{array}\right]\right\}
$$

This gives the diagonalization

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& \\
0 & a+1
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & a
\end{array}\right] \frac{1}{a+1}\left[\begin{array}{rr}
{ }^{D} \\
a+1 & -1 \\
0 & 1
\end{array}\right]
$$

The solution $\boldsymbol{u}(t)$ to the initial value problem is then

$$
\begin{aligned}
\boldsymbol{u}(t) & =\left[\begin{array}{ll}
1 & X \\
0 & a+1
\end{array}\right]\left[\begin{array}{ll}
e^{-t} & \\
& e^{a t}
\end{array}\right] \frac{1}{a+1}\left[\begin{array}{rr}
x^{-1} & \\
a+1 & -1 \\
0 & 1
\end{array}\right](a+1) \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\left[\begin{array}{lr}
1 & 1 \\
0 & a+1
\end{array}\right]\left[\begin{array}{ll}
e^{-t} & \\
& e^{a t}
\end{array}\right]\left[\begin{array}{rr}
3 a+2 \\
& 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & 1 \\
0 & a+1
\end{array}\right]\left[\begin{array}{rr}
(3 a+2) e^{-t} \\
e^{a t}
\end{array}\right] \\
& =\left[\begin{array}{r}
(3 a+2) e^{-t}+e^{a t} \\
(a+1) e^{a t}
\end{array}\right]
\end{aligned}
$$

We now have the formulas

$$
u_{1}=(3 a+2) e^{-t}+e^{a t} \quad u_{2}=(a+1) e^{a t}
$$

Our partial derivatives are then

$$
\frac{\partial u_{1}}{\partial a}=3 e^{-t}+t e^{a t} \quad \frac{\partial u_{2}}{\partial a}=e^{a t}+t(a+1) e^{a t}
$$

