DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam III

Name:

NetID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

December 1, 2023

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. Suppose that A = QR where A, Q, and R are given by

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & a_3 \\ | & | & | \end{bmatrix} \qquad \qquad Q = \frac{1}{h} \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & -x \\ 1 & x & 1 \\ x & -1 & -1 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} \sqrt{5} & 4 & 0 \\ 0 & 2 & 7 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$$

Note that the columns of A have been labeled a_1, a_2, a_3 and that the formula for Q depends on variables x and h.

(6 pts) (a) $\operatorname{rank}(A) = \underline{\qquad}, \operatorname{rank}(R) = \underline{\qquad}, \operatorname{and} \operatorname{rank}(Q) = \underline{\qquad}$

(5 pts) (b) h = _____ (your formula for h here should depend on the variable x)

(8 pts) (c) $\det(R) =$ _____, $\det(RQ^{\intercal}Q) =$ _____, and $\det(RA^{\intercal}A) =$ _____

(6 pts) (d) If q_2 is the second column of Q, then $\langle q_2, a_1 \rangle =$ _____, $\langle q_2, a_2 \rangle =$ _____, and $\langle q_2, a_3 \rangle =$ ______

(6 pts) (e) If q_1 is the first column of Q, then only one of the following statements is correct. Select this statement. $\bigcirc \operatorname{proj}_{q_1}(a_1) = O \quad \bigcirc \operatorname{proj}_{q_1}(a_2) = O \quad \bigcirc \operatorname{proj}_{q_1}(a_3) = O \quad \bigcirc \operatorname{none} \operatorname{of} \operatorname{these} \operatorname{equations} \operatorname{is correct}$

(10 pts) (f) Find the projection of $\boldsymbol{b} = \begin{bmatrix} h^2 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ onto $\operatorname{Col}(Q)$ (your answer will deend on the variable x).

Problem 2. The following equation depicts $A = XBX^{-1}$, which tells us that A is *similar* to B.

$$\begin{bmatrix} A \\ \end{bmatrix} = \begin{bmatrix} i & 1 & 2 & -1 \\ 1 & i & -1 & -i \\ 1 & -3 & 0 & -1 \\ 1 & -1 & i & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 & 0 & 9 \\ 0 & 7 & i & 4 \\ 0 & 0 & 1 & i \\ 0 & 0 & 0 & i \end{bmatrix} \begin{bmatrix} X^{-1} \\ X^{-1} \end{bmatrix}$$

Note that several entries in X and in B are nonreal complex numbers and that B is upper triangular.

(4 pts) (a) trace(A) = _____ and det(A) = _____

(4 pts) (b) If x_1 is the first column of X and x_2 is the second column of X, then $\langle x_1, x_2 \rangle =$ _____.

- (8 pts) (c) Note that $\operatorname{trace}(X) = 2i+2$. This calculation allows us to decide whether or not each of the following statements is true. Select each true statement (each option is worth 2pts).
 - $\bigcirc \lambda = 2i + 2$ is an eigenvalue of X
 - $\bigcirc X$ has at least one nonreal eigenvalue
 - \bigcirc the coefficient of t^3 in $\chi_X(t)$ is 2i+2
 - $\bigcirc~X$ cannot be similar to any Hermitian matrix

(3 pts) (d) The algebraic multiplicity of every eigenvalue λ of A is $\operatorname{am}_A(\lambda) =$ _____.

(10 pts) (e) Note that $\lambda = 5$ and $\lambda = 7$ are both eigenvalues of A. Find bases of $\mathcal{E}_A(5)$ and $\mathcal{E}_A(7)$ and determine if $\mathcal{E}_A(5) \perp \mathcal{E}_A(7)$. *Hint.* Start by finding bases of $\mathcal{E}_B(5)$ and $\mathcal{E}_B(7)$. How do bases of these eigenspaces then translate into bases of $\mathcal{E}_A(5)$ and $\mathcal{E}_A(7)$? **Problem 3.** The data below depicts an invertible real-symmetric matrix S, an invertible matrix T, and the characteristic polynomial $\chi_S(t)$ of S (which has been partially factored).

$$S = \begin{bmatrix} 2 & -1 & 1 & 2 \\ -1 & 2 & -1 & -2 \\ 1 & -1 & 2 & 2 \\ 2 & -2 & 2 & 5 \end{bmatrix} \qquad T = \begin{bmatrix} -7 & 1 & -1 & -1 \\ 0 & 1 & 2 & -1 \\ -10 & 14 & 1 & -2 \\ 1 & 5 & -2 & 1 \end{bmatrix} \qquad \chi_S(t) = (t^2 - 2t + 1)(t^2 - 9t + 8)$$

Throughout this problem, let $A = M^{-1}T$ where $M = S^{-1}T$.

(6 pts) (a) Determine the definiteness of S. Clearly explain your reasoning to receive credit.

(10 pts) (b) Show that A is similar to S. Hint. This can be done purely with symbols. (14 pts) **Problem 4.** Suppose that u(t) is the solution to u' = Au with $u(0) = u_0$ where

$$A = \begin{bmatrix} -1 & 1\\ 0 & a \end{bmatrix} \qquad \qquad \mathbf{u}_0 = (a+1) \cdot \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

Note that the matrix A and the vector u_0 are defined in terms of a real variable a which is known to satisfy $a \neq -1$. The two coordinates u_1 and u_2 of u(t) depend both on t and a and can thus be interpreted as scalar fields. Calculate the partial derivatives $\frac{\partial u_1}{\partial a}$ and $\frac{\partial u_2}{\partial a}$.