DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam III

Name:

Unique ID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

November 22, 2024

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. The data below depicts a matrix Q with orthonormal columns, the adjugate of an upper triangular matrix R, and the characteristic polynomial of R.

$$Q = \frac{1}{5} \begin{bmatrix} 2 & -2 & 3\\ -2 & -4 & -2\\ -1 & 0 & 2\\ 4 & -1 & -2\\ 0 & -2 & 2 \end{bmatrix} \qquad \text{adj}(R) = \begin{bmatrix} -20 & -20 & 10\\ 0 & 20 & -20\\ 0 & 0 & -25 \end{bmatrix} \qquad \chi_R(t) = t^3 + 4t^2 - 25t - 100$$

Let A = QR. Do not ignore the factor of 1/5 used to define Q.

- (6 pts) (a) trace($Q^{\intercal}Q$) = _____ and trace(R) = _____
- (4 pts) (b) The (3,1) cofactor of R is _____.
- (5 pts) (c) Each of the following statements is true. However, only one is equivalent to the statement " R^{-1} exists." Select this statement.

 \bigcirc trace(adj(R)) $\neq 0$ \bigcirc The eigenvalues of R do not sum to zero. $\bigcirc \chi_R(t)$ is monic.

 $\bigcirc \chi_R(0) \neq 0 \quad \bigcirc \operatorname{adj}(R)$ exists.

(12 pts) (d) Let $\boldsymbol{b} = \begin{bmatrix} 0 & 0 & 500 & 0 \end{bmatrix}^{\mathsf{T}}$. The system $A\boldsymbol{x} = \boldsymbol{b}$ is inconsistent. Find the least squares approximate solution $\hat{\boldsymbol{x}}$ to $A\boldsymbol{x} = \boldsymbol{b}$. Clearly explain your reasoning to receive credit.

(18 pts) Problem 2. Let u(t) be the solution to the initial value problem u' = Au with $u(0) = u_0$ where

$$A = \begin{bmatrix} -5 & 1\\ 4 & -2 \end{bmatrix} \qquad \qquad \mathbf{u}_0 = \begin{bmatrix} -5\\ 15 \end{bmatrix}$$

Find u(t). Clearly explain your reasoning to receive credit.

Problem 3. Suppose that x > 0 is a real number and consider the spectral factorization $H = UDU^*$ given by

$$\begin{bmatrix} ? & -i & 1-i & i\\ i & ? & -1 & 1-i\\ 1+i & -1 & ? & -1\\ -i & 1+i & -1 & ? \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{x}} & \frac{1}{2} & \frac{1}{2} & \frac{5}{\sqrt{60}} \\ \frac{-2}{\sqrt{x}} & \frac{1+i}{2} & 0 & \frac{-1-3i}{\sqrt{60}} \\ \frac{2+i}{\sqrt{x}} & \frac{i}{2} & \frac{-i}{2} & \frac{-2-i}{\sqrt{60}} \\ \frac{-1-i}{\sqrt{x}} & 0 & \frac{1-i}{2} & \frac{-2+4i}{\sqrt{60}} \end{bmatrix} \begin{bmatrix} 3 & & & \\ & & & -1 & \\ & & & & -3 \end{bmatrix} \begin{bmatrix} & & U^* & \\ & & & & -3 \end{bmatrix} \begin{bmatrix} & & & \\ & & & & & \\ \end{bmatrix}$$

Note that each entry in the first column of U has a denominator of \sqrt{x} and that every diagonal entry of H is unknown and marked ?.

(5 pts) (a) x =

(16 pts) (b) Which of the following scalars is equal to zero? Select all that apply (2pts each).

 \bigcirc trace(H) \bigcirc det(H) \bigcirc nullity($i \cdot I_4 - H$) \bigcirc The "imaginary part" of every entry marked ?.

- $\bigcirc \chi_H(i^2) \bigcirc \det(3 \cdot I_4 H) \bigcirc$ One of the eigenvalues of U.
- \bigcirc The "real part" of $\exp(h_{31} \cdot \pi/2) = e^{h_{31} \cdot \pi/2}$ where h_{31} is the (3,1) entry of H.
- (10 pts) (c) Suppose that Y is invertible and let $A = (U^*Y^{-1})D(YU)$. Calculate $\chi_A(2)$. Clearly explain your reasoning to receive credit.

Problem 4. Let S be the 4×4 real symmetric matrix that defines the quadratic form

$$q(\mathbf{x}) = \langle \mathbf{x}, S\mathbf{x} \rangle = 5 x_1^2 - 2 x_1 x_2 + x_2^2 + 8 x_1 x_3 + 4 x_2 x_3 + 4 x_3^2 + 6 x_1 x_4 - 2 x_2 x_4 + 8 x_3 x_4 + 5 x_4^2 + 8 x_4 x_5 + 8 x_5 x_4 + 8 x_5 x_5 + 8 x_5 + 8$$

If we "complete the square", then this quadratic form simplifies to

$$q(\mathbf{x}) = \lambda_1 \, y_1^2 + 3 \, y_2^2 + 2 \, y_3^2 - 2 \, y_4^2$$

where λ_1 is a scalar and y_1, y_2, y_3 are expressions that depend on x_1, x_2, x_3 .

(4 pts) (a) What is the definiteness of S? Select all that apply (no partial credit here).

 \bigcirc positive definite \bigcirc positive semidefinite \bigcirc negative definite \bigcirc negative semidefinite \bigcirc indefinite

(5 pts) (b) Only one of the following expressions is a correct formula for the quadratic form $f(\mathbf{x}) = \langle \mathbf{x}, \exp(S)\mathbf{x} \rangle$. Select this expression.

$$\bigcirc f(\mathbf{x}) = e^{\lambda_1} y_1^2 + e^3 y_2^2 + e^2 y_3^2 + e^{-2} y_4^2 \qquad \bigcirc f(\mathbf{x}) = e^{\lambda_1} y_1^2 e^{3y_2^2} e^{2y_3^2} e^{-2y_4^2}$$
$$\bigcirc f(\mathbf{x}) = e^{\lambda_1} y_1^2 + e^{3y_2^2} + e^{2y_3^2} + e^{-2y_4^2} \qquad \bigcirc f(\mathbf{x}) = \lambda_1 e^{y_1^2} + 3 e^{y_2^2} + 2 e^{y_3^2} - 2 e^{y_4^2} \qquad \bigcirc \text{ none of these}$$

(5 pts) (c) $\lambda_1 =$ _____

(10 pts) (d) Calculate y_3^2 when $x_1 = 2$, $x_2 = 4$, $x_3 = 6$, and $x_4 = 8$. Clearly explain your reasoning to receive credit.