Linear Approximations

Problem 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be the function defined by

$$\boldsymbol{f}(x,y) = \begin{bmatrix} x^2 + \sin(x) \\ x(y-2) \\ -3xy + y^2 \end{bmatrix}$$

Use the local linearization of \boldsymbol{f} at the point P = (0, 1) to approximate f(1/2, 1/2).

Problem 2. Let $r : \mathbb{R} \to \mathbb{R}^3$ be the function defined by

$$\boldsymbol{r}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix}$$

Use the local linearization of \boldsymbol{r} at $t = 1/2 \pi$ to approximate $\boldsymbol{r}(1/2 \pi + 1/3)$.

Problem 3. Consider $F : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$\boldsymbol{F}(r,\theta,z) = \begin{bmatrix} r\cos\left(\theta\right) \\ r\sin\left(\theta\right) \\ z \end{bmatrix}$$

Show that $\det(D\mathbf{F}) = r$.

Problem 4. Consider $F : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$\boldsymbol{F}(\boldsymbol{\rho},\boldsymbol{\varphi},\boldsymbol{\theta}) = \begin{bmatrix} \boldsymbol{\rho}\cos\left(\boldsymbol{\theta}\right)\sin\left(\boldsymbol{\varphi}\right) \\ \boldsymbol{\rho}\sin\left(\boldsymbol{\theta}\right)\sin\left(\boldsymbol{\varphi}\right) \\ \boldsymbol{\rho}\cos\left(\boldsymbol{\varphi}\right) \end{bmatrix}$$

Show that $\det(D\mathbf{F}) = \rho^2 \sin(\varphi)$.

Problem 5. Let $\boldsymbol{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$\boldsymbol{f}(r,\theta) = \begin{bmatrix} r\cos\left(\theta\right) \\ r\sin\left(\theta\right) \end{bmatrix}$$

Let $R_{\theta} = D\boldsymbol{f}$ evaluated at r = 1. The matrix R_{θ} is called the counterclockwise rotation matrix in \mathbb{R}^2 by θ . The matrix-vector product $R_{\theta}\boldsymbol{v}$ is the vector \boldsymbol{v} rotated counterclockwise by the angle θ .

(a) Calculate the matrix R_{θ} .

(b) Let $\boldsymbol{v} = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$. Find the coordinates of the vector \boldsymbol{v} rotated counterclockwise by an angle of θ (this vector will depend on the coordinates x, y, and the angle θ .

(c) Find the coordinates of the vector $\boldsymbol{v} = \begin{bmatrix} 5/2\sqrt{3} + 3/2 \\ 3/2\sqrt{3} - 5/2 \end{bmatrix}$ rotated counterclockwise by $\theta = 5\pi/3$.