DUKE UNIVERSITY

MATH 218D-2

MATRICES AND VECTORS

Exam II	
Name:	$Unique\ ID:$
Solutions	
I have adhered to the Duke Community Standard in completing this exam.	
Signature:	

October 24, 2025

- There are 100 points and 4 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. The data below depicts the equation $E(\lambda \cdot I_5 - A) = R$ where A is an unspecified 5×5 matrix, λ is an unspecified scalar quantity, E is nonsingular, and $R = \text{rref}(\lambda \cdot I_5 - A)$.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & -1 \\ -1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

- (4 pts) (b) Only one of the following statements accurately applies to the eigenvectors of A corresponding to the eigenvalue λ . Select this statement.
 - \bigcirc A has exactly one eigenvector corresponding to the eigenvalue λ .
 - \bigcirc A has exactly two eigenvectors corresponding to the eigenvalue λ .
 - \bigcirc A has infinitely many eigenvectors corresponding to the eigenvalue λ , but these eigenvectors are all multiples of each other.
 - $\sqrt{\ }$ It is possible to find two linearly independent eigenvectors of A corresponding to the eigenvalue λ but it is impossible to find three linearly independent eigenvectors of A corresponding to the eigenvalue λ .
 - O None of the above.
- (4 pts) (c) Only one of the following vectors is an eigenvector of A corresponding to the eigenvalue λ . Select this vector.

$$\bigcirc \ \, \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \bigcirc \ \, \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ -1 \end{bmatrix} \quad \bigcirc \ \, \boldsymbol{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \bigcirc \ \, \boldsymbol{v}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \sqrt{\ \, \boldsymbol{v}_5} = \begin{bmatrix} 1 \\ 1 \\ 3 \\ -1 \\ 0 \end{bmatrix}$$

- (4 pts) (d) Of the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ defined as the options in part (c) of this problem, only one belongs to the column space of $\lambda \cdot I_5 A$. Select this vector. $\bigcirc \mathbf{v}_1 \quad \sqrt{\mathbf{v}_2} \quad \bigcirc \mathbf{v}_3 \quad \bigcirc \mathbf{v}_4 \quad \bigcirc \mathbf{v}_5$
- (4 pts) (e) Let P be the projection matrix onto the vector space $V = \mathcal{E}_A(\lambda)$. The matrix $I_5 P$ is then the projection matrix onto only one of the following vector spaces. Select this vector space.
 - $\bigcirc \mathcal{E}_A(1-\lambda)$ \bigcirc The column space of A. \bigcirc The row space of A.
 - \bigcirc The column space of $\lambda \cdot I_5 A$. $\sqrt{}$ The row space of $\lambda \cdot I_5 A$.
- (10 pts) (f) Find a basis of $\mathcal{E}_A(\lambda)$. Clearly explain your reasoning to receive credit. List your basis vectors in the box at the bottom of this page for clarity.

Solution. By definition, $\mathcal{E}_A(\lambda) = \text{Null}(\lambda \cdot I_5 - A)$. Our primary technique for finding bases of null spaces is to find the "pivot solutions" to the defining equation, which is $(\lambda \cdot I_5 - A)\boldsymbol{x} = \boldsymbol{O}$ here. The given $R = \text{rref}(\lambda \cdot I_5 - A)$ gives us everything we need. The system $(\lambda \cdot I_5 - A)\boldsymbol{x} = \boldsymbol{O}$ has five variables x_1, x_2, x_3, x_4, x_5 where $x_2 = c_1$ and $x_4 = c_2$ are free. The relevant equations are

$$x_1 - 5c_1 - 4c_2 = 0$$
 $x_3 + 3c_2 = 0$ $x_5 = 0$

Solving for the dependent in terms of the free yields the general solution as

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 c_1 + 4 c_2 \\ c_1 \\ -3 c_2 \\ c_2 \\ 0 \end{bmatrix} = c_1 \cdot \begin{bmatrix} 5 \\ 1 \\ 0 \\ + c_2 \cdot \begin{bmatrix} 4 \\ 0 \\ -3 \\ 1 \\ 0 \end{bmatrix}$$

This gives our basis as $\mathcal{E}_A(\lambda) = \operatorname{Span} \begin{bmatrix} 5 & 1 & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 4 & 0 & -3 & 1 & 0 \end{bmatrix}^\mathsf{T}$.

Problem 2. The data below depicts two 5×3 matrices X and Y and the matrix $M = X(Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}}$.

$$X = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -3 \\ -2 & 13 & -40 \\ -2 & 12 & -41 \\ -3 & 15 & -45 \end{bmatrix} \qquad Y = \begin{bmatrix} 5 & -17 & 99 \\ 5 & -14 & 90 \\ -1 & 2 & -13 \\ -3 & 9 & -56 \\ 2 & -7 & 40 \end{bmatrix} \qquad M = \begin{bmatrix} -433 & 485 & 381 & -163 & -290 \\ -109 & 122 & 96 & -41 & -73 \\ 24 & -27 & -20 & 9 & 16 \\ -423 & 471 & 372 & -158 & -283 \\ 735 & -822 & -645 & 276 & 492 \end{bmatrix}$$

It is known that both X and Y have linearly independent columns.

- (5 pts) (a) $\operatorname{nullity}(X) = \operatorname{nullity}(Y) = \underline{0}$ and $\dim \operatorname{Null}(X^{\intercal}) = \dim \operatorname{Null}(Y^{\intercal}) = \underline{2}$
- (4 pts) (b) Let v be a vector. Which of the following vector spaces must v belong to in order to guarantee that $v \in \text{Null}(M)$?
 - \bigcirc The column space of X. \bigcirc The column space of Y. \bigcirc The left null space of X.
 - $\sqrt{\text{ The left null space of } Y}$. \bigcirc The null space of X.
- (10 pts) (c) Show that M is idempotent. To receive credit, your work must be neatly organized and easy to follow.

Solution. We are given that $M = X(Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}}$. We wish to demonstrate that M is *idempotent*, which means we wish to show that $M^2 = M$.

To do so, note that

$$M^{2} = (X(Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}}) (X(Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}})$$

$$= X \underbrace{(Y^{\mathsf{T}}X)^{-1}(Y^{\mathsf{T}}X)}_{=I_{3}} (Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}}$$

$$= X(Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}}$$

$$= M$$

So indeed M is idempotent as promised.

(10 pts) (d) Let v be any vector in the column space of X (recall that this means that v = Xx for some vector x). Show that $v \in \mathcal{E}_M(\lambda)$ and identify the correct value of λ . To receive credit, your work must be neatly organized and easy to follow. Record your value of λ in the blank below for clarity.

Solution. We are given that v = Xx. We wish to demonstrate that $v \in \mathcal{E}_M(\lambda)$, which means we wish to validate the equation $Mv = \lambda \cdot v$. To do so, note that

$$M\mathbf{v} = MX\mathbf{x}$$

$$= X \underbrace{(Y^{\mathsf{T}}X)^{-1}Y^{\mathsf{T}}X}_{=I_3} \mathbf{x}$$

$$= X\mathbf{x}$$

$$= \mathbf{v}$$

$$= 1 \cdot \mathbf{v}$$

This demonstrates that $M\mathbf{v} = \lambda \cdot \mathbf{v}$ with $\lambda = 1$.

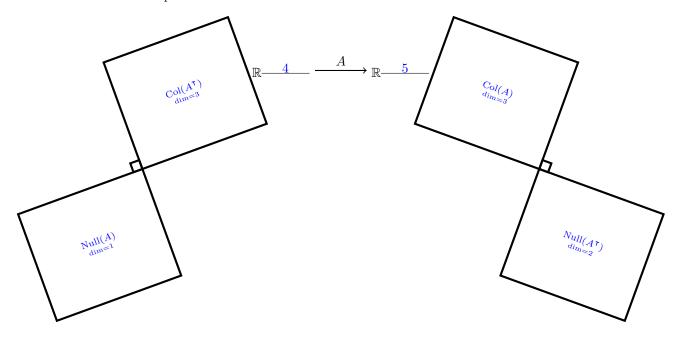
 $\lambda = \underline{\hspace{1cm}}$

Problem 3. The data below depicts a 5×4 matrix A along with the projection matrix P onto the null space of A.

$$A = \begin{bmatrix} 1 & 1 & 8 & 10 \\ 4 & 5 & 37 & 43 \\ -4 & -9 & -56 & -54 \\ 5 & 2 & 30 & 46 \\ 3 & 2 & 24 & 32 \end{bmatrix} \qquad P = \frac{1}{22} \begin{bmatrix} 16 & -8 & 4 & -4 \\ -8 & 4 & -2 & 2 \\ 4 & -2 & 1 & -1 \\ -4 & 2 & -1 & 1 \end{bmatrix}$$

Do not ignore the factor of 1/22 used to define P (for instance, the (3,4) entry of P is -1/22)!

(10 pts) (a) Fill in every missing label in the picture of the four fundamental subspaces of A below, including the dimension of each fundamental subspace.



(5 pts) (b) Let \boldsymbol{v} be any vector in $\operatorname{Col}(A)$ and let M be the 5×5 matrix whose first four columns are the same as the first four columns of A and whose fifth column is \boldsymbol{v} . Fill in each of the following blanks with a ">" sign, a "<" sign, or an "=" sign (2.5pts each).

$$\dim \operatorname{Col}(A) = \dim \operatorname{Col}(M)$$
 $\dim \operatorname{Null}(A) < \dim \operatorname{Null}(M)$

(10 pts) (c) Let $\mathbf{b} = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$. Determine if it is possible to express \mathbf{b} as a linear combination of the rows of A. Clearly explain your reasoning to receive credit.

Solution. This is the same as asking to determine whether or not \boldsymbol{b} is in the *row space* of A, which is $\operatorname{Col}(A^{\intercal})$. The "from scratch" method of solving this problem would be to check the consistency of the system $A\boldsymbol{x} = \boldsymbol{b}$. The numbers in A are clearly too complicated to take this approach.

Instead, note that $\operatorname{Col}(A^{\intercal}) = \operatorname{Null}(A)^{\perp}$. Since we are given the projection matrix onto $\operatorname{Null}(A)$, we need only check whether or not $P\mathbf{b} = \mathbf{O}$. The relevant calculation here is

$$\frac{1}{22} \begin{bmatrix} 16 & -8 & 4 & -4 \\ -8 & 4 & -2 & 2 \\ 4 & -2 & 1 & -1 \\ -4 & 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} b \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

This indicates that it is, in fact, possible to express $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ as a linear combination of the rows of A. Note that it is equally valid to arrive at this conclusion by checking that $(I-P)\mathbf{b} = \mathbf{b}$ since I-P is projection onto $\operatorname{Col}(A^{\mathsf{T}})$.

Problem 4. Let f(t) be the curve defined by

$$f(t) = c_1 \cdot f_1(t) + c_2 \cdot f_2(t) + c_3 \cdot f_3(t)$$

where c_1 , c_2 , and c_3 are unknown scalars and $f_1(t)$, $f_2(t)$, and $f_3(t)$ are functions whose values at $t = 0, \pm 1, \pm 2, \pm 3$ are given in the table to the right of this paragraph (for example $f_1(3) = 1$ and $f_3(0) = -1$).

t	-3	-2	-1	0	1	2	3
$f_1(t)$	1	-1	-2	1	1	1	_
$f_2(t)$	1	2	-1	1	1	-1	
$f_2(t)$ $f_3(t)$	1	-1	-1	-1	2	-2	2

(10 pts) (a) It is impossible to find c_1 , c_2 , c_3 such that f(t) fits all points in the dataset $\{(2, -7), (-2, 0), (0, 0), (-1, 0)\}$. Use the least squares technique to find $\hat{f}(t) = \hat{c}_1 \cdot f_1(t) + \hat{c}_2 \cdot f_2(t) + \hat{c}_3 \cdot f_3(t)$ that best fits this data. Record your values of \hat{c}_1 , \hat{c}_2 , and \hat{c}_3 below for clarity.

Solution. An attempt to "perfectly" fit f(t) to the data leads to the following equations.

The system of interest is then of the form Ax = b where

$$A = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -1 & -1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -7 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad A^{\mathsf{T}}A = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix} \qquad A^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} -7 \\ 7 \\ 14 \end{bmatrix}$$

The associated least squares problem is $A^{\dagger}A\hat{x} = A^{\dagger}b$. Interestingly we find that $A^{\dagger}A = 7 \cdot I_3$, which easily inverts as $(A^{\dagger}A)^{-1} = \frac{1}{7} \cdot I_3$. Our least squares problem is then solved by

$$\widehat{\boldsymbol{x}} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\boldsymbol{b} = \frac{1}{7}A^{\mathsf{T}}\boldsymbol{b} = \frac{1}{7}\begin{bmatrix} -7\\7\\14 \end{bmatrix} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$$

Our least squares curve is thus $\hat{f}(t) = -f_1(t) + f_2(t) + 2 f_3(t)$.

$$\hat{c}_1 = \underline{}_1, \hat{c}_2 = \underline{}_1, \hat{c}_3 = \underline{}_2$$

(8 pts) (b) It is also impossible to find c_1 , c_2 , and c_3 such that f(t) fits all points in the dataset $\{(0, -2), (1, 0), (2, 1), (3, 2)\}$. The least squares version of f(t) that best fits this dataset is $\hat{f}(t) = f_1(t) - 2f_2(t) + f_3(t)$. Find the error E in this approximation. Record your value of E below for clarity.

Solution. An attempt to "perfectly" fit f(t) to the data leads to the following equations.

$$f(0) = -2 \leftrightarrow c_1 \cdot f_1(0) + c_2 \cdot f_2(0) + c_3 \cdot f_3(0) = -2 \leftrightarrow c_1 + c_2 - c_3 = -2$$

$$f(1) = 0 \leftrightarrow c_1 \cdot f_1(1) + c_2 \cdot f_2(1) + c_3 \cdot f_3(1) = 0 \leftrightarrow c_1 + c_2 + 2c_3 = 0$$

$$f(2) = 1 \leftrightarrow c_1 \cdot f_1(2) + c_2 \cdot f_2(2) + c_3 \cdot f_3(2) = 1 \leftrightarrow c_1 - c_2 - 2c_3 = 1$$

$$f(3) = 2 \leftrightarrow c_1 \cdot f_1(3) + c_2 \cdot f_2(3) + c_3 \cdot f_3(3) = 2 \leftrightarrow c_1 + c_2 - 2c_3 = 2$$

This is the system Ax = b where

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 2 \\ 1 & -1 & -2 \\ 1 & 1 & 2 \end{bmatrix} \qquad \qquad b = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

We are told that the least squares curve is $\hat{f}(t) = f_1(t) - 2f_2(t) + f_3(t)$, which means that the solution to our associated least squares problem $A^{\mathsf{T}}A\hat{x} = A^{\mathsf{T}}b$ is $\hat{x} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^{\mathsf{T}}$. The error in this approximation is then

$$E = \|\boldsymbol{b} - A\widehat{\boldsymbol{x}}\|^2 = \|\begin{bmatrix} -2 & 0 & 1 & 2\end{bmatrix}^\mathsf{T} - \begin{bmatrix} -2 & 1 & 1 & 1\end{bmatrix}^\mathsf{T}\|^2 = \|\begin{bmatrix} 0 & -1 & 0 & 1\end{bmatrix}^\mathsf{T}\|^2 = 2$$

$$E = \underline{}$$