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Problem 1. The data below depicts the equation E(X-I5 — A) = R where A is an unspecified 5 x 5 matrix, X is an
unspecified scalar quantity, F is nonsingular, and R = rref(\ - I5 — A).

E R
11 00 0 1 -5 0 -4 0
-1 0 0 0 -1 0 01 3 0
0 0 1 1 -1 AIs— A =10 0 0 0 1
-1 0 -1 0 0 0 0 0 0 0
01 1 0 -1 0 00 00
(2 pts) (a) A is an eigenvalue of A with gm 4(\) = 2 .

(4 pts) (b) Only one of the following statements accurately applies to the eigenvectors of A corresponding to the eigenvalue
A. Select this statement.

(O A has exactly one eigenvector corresponding to the eigenvalue A.
(O A has exactly two eigenvectors corresponding to the eigenvalue A.

(O A has infinitely many eigenvectors corresponding to the eigenvalue A, but these eigenvectors are all
multiples of each other.

v/ It is possible to find two linearly independent eigenvectors of A corresponding to the eigenvalue A but
it is impossible to find three linearly independent eigenvectors of A corresponding to the eigenvalue \.

(O None of the above.

(4 pts) (¢) Only one of the following vectors is an eigenvector of A corresponding to the eigenvalue A. Select this vector.

1 1 1 1 1
) 0 1 1 1
O’Ul: 0 O'UQZ -1 O’ng 0 0'04: 1 \/’05: 3
0 0 0 0 -1
1 -1 1 0 0

(4 pts) (d) Of the vectors vy, vy, v3, V4, v5 defined as the options in part (¢) of this problem, only one belongs to the column
space of \-Is — A. Select this vector. O vy  va QO vy OQwvs O vs

(4 pts) (e) Let P be the projection matrix onto the vector space V= £4(A). The matrix Is — P is then the projection
matrix onto only one of the following vector spaces. Select this vector space.

O €a(1=X) (O The column space of A. (O The row space of A.

(O The column space of - Is — A.  / The row space of X - Iy — A.

(10 pts) (f) Find a basis of £4(\). Clearly explain your reasoning to receive credit. List your basis vectors in the box at the
bottom of this page for clarity.
Solution. By definition, £4(A\) = Null(A - I5 — A). Our primary technique for finding bases of null spaces is to
find the “pivot solutions” to the defining equation, which is (A-I5 — A)x = O here. The given R = rref(A-I5s — A)
gives us everything we need. The system (A - I5 — A)x = O has five variables x1, o, x3, x4, x5 Where o = 1
and x4 = co are free. The relevant equations are

$1—5C1—462:0 $3+302=O 155:0

Solving for the dependent in terms of the free yields the general solution as

X1 5c1+4co 5 4
T2 c1 1 0
= |r3| = —3co| =c;- |0 +co- |3
Ty C2 0 1
s 0 0 0

This gives our basis as £4(\) =Span[5 1 0 0 0]",[4 0 -3 1 0]



Problem 2. The data below depicts two 5 x 3 matrices X and Y and the matrix M = X(YTX)"1YT.

1 -2 7 5 —17 99 —433 485 381 —163 —290

0 1 -3 5 —14 90 —-109 122 9% —41 73
X=|-2 13 —40 Y=|-1 2 -13 M = 24 =27 =20 9 16
-2 12 -41 -3 9 —56 —423 471 372 —158 —283

-3 15 —45 2 =7 40 735 —822 —645 276 492

It is known that both X and Y have linearly independent columns.
(5 pts) (@) nullity(X) = nullity(Y)=__0  and dimNull(XT) = dimNull(YT) =__ 2
(4 pts) (b) Let v be a vector. Which of the following vector spaces must v belong to in order to guarantee that v € Null(M)?

(O The column space of X. () The column space of Y. (O The left null space of X.

v/ The left null space of Y. (O The null space of X.

(10 pts) (¢) Show that M is idempotent. To receive credit, your work must be neatly organized and easy to follow.

Solution. We are given that M = X (YTX)~1YT. We wish to demonstrate that M is idempotent, which means
we wish to show that M? = M.

To do so, note that

M= (X(Y™X)"'YT) (X(YTX)'YT)
=X YTX) ' (YTX)(YTX) YT
=I3
= X(YTX) YT
=M

So indeed M is idempotent as promised.

(10 pts) (d) Let v be any vector in the column space of X (recall that this means that v = X« for some vector x). Show
that v € Ey(N\) and identify the correct value of A. To receive credit, your work must be neatly organized and
easy to follow. Record your value of A in the blank below for clarity.

Solution. We are given that v = Xa. We wish to demonstrate that v € Ey/(\), which means we wish to
validate the equation Mv = A - v. To do so, note that

Mv=MXx
=XY'X)" WXz
N———

=13

This demonstrates that Mv = X\ - v with A = 1.



Problem 3. The data below depicts a 5 x 4 matrix A along with the projection matrix P onto the null space of A.

1 1 8 10 16 —8 4 4
4 5 37 43 11-8 4 _9 9
A=|-4 -9 -—-56 -—-54 = —
221 4 =2 1 -1
5 2 30 46 4 9 _1 1
3 2 24 32

Do not ignore the factor of 1/22 used to define P (for instance, the (3,4) entry of P is —1/22)!

(10 pts) (@) Fill in every missing label in the picture of the four fundamental subspaces of A below, including the dimension

(5 pts) (b)

(10 pts) (¢)

of each fundamental subspace.

Let v be any vector in Col(A) and let M be the 5 x 5 matrix whose first four columns are the same as the first
four columns of A and whose fifth column is . Fill in each of the following blanks with a “>" sign, a “<” sign,
or an “=" sign (2.5pts each).

dim Col(A)

= dim Col(M) dim Null(4)_ < dim Null(M)

Let b= [O 0 1 1] T. Determine if it is possible to express b as a linear combination of the rows of A. Clearly
explain your reasoning to receive credit.

Solution. This is the same as asking to determine whether or not b is in the row space of A, which is Col(AT).
The “from scratch” method of solving this problem would be to check the consistency of the system Ax = b.
The numbers in A are clearly too complicated to take this approach.

Instead, note that Col(AT) = Null(A)1. Since we are given the projection matrix onto Null(A4), we need only
check whether or not Pb = O. The relevant calculation here is

P b
16 -8 4 —4]0 0
1[-8 4 -2 2[|o] o
20 4 =2 1 —1f|1] T o
—4 2 -1 1|1 0

This indicates that it is, in fact, possible to express [O 0 1 1} T as a linear combination of the rows of A.

Note that it is equally valid to arrive at this conclusion by checking that (I — P)b = b since I — P is projection
onto Col(AT).



Problem 4. Let f(t) be the curve defined by

F(B) = ex Filt) + 2 folt) + s+ Fo(1) A o L
=c-h c2 - f2 c3 - f3

AB] 1 -1 —2 11 11
where ¢1, co, and c3 are unknown scalars and fi(t), f2(t), and f3(t) fa(t) 1 2 -1 11 -1 1
are functions whose values at ¢ = 0,41, £2, +3 are given in the table f3(1) 1 -1 -1 -1 2 -2 2

to the right of this paragraph (for example f1(3) =1 and f3(0) = —1).

(10 pts) (a)

(8 pts) (b)

It is impossible to find ¢;, ¢a, ¢3 such that f(¢) fits all points in the dataset {(2,—-7), (-2,0), (0,0),(—1,0)}. Use

the least squares technique to find f(t) = ¢ - fi(t) + 2 - fa(t) + €3 - f3(t) that best fits this data. Record your
values of ¢y, ¢z, and ¢3 below for clarity.

Solution. An attempt to “perfectly” fit f(¢) to the data leads to the following equations.

f(2) = -7 & G fl (2) + co- f2(2) + c3- f3(2) = -7 & cT  — Co — 263 =
f(—2) = 0 < - fl(_2) + 9 fg(—2) + c3- fg(—2) = 0 « -1 + 2¢ -— c3 =
f0O) = 0 < c-fi(0) 4+ c2-f2(0) + c3-f3(0) = 0 a + @ - c =
f(—l) = 0 < - fl(—l) 4+ co- fQ(—l) + c3- fg(—l) = 0 < —2c¢ -— Co — c3 =
The system of interest is then of the form Ax = b where
_} _; :f 2 _g 70 0 ~7
A= T = |co b= ATA=10 7 0 ATh = 7
Lol 0 00 7 14
2 -1 -1 = 0

The associated least squares problem is ATAZ = ATb. Interestingly we find that ATA = 7 - I3, which easily
inverts as (ATA)™! = % - Is. Our least squares problem is then solved by

1 =7 -1
Z=(ATA)'ATb= _ATb=_| 7| =| 1
7 |14 2
Our least squares curve is thus f(t) = —f1(t) + fa(t) + 2 f5(¢).
/C\l == —717 /C\Q == 1 5 /C\g - 2

It is also impossible to find ¢1, 2, and cg such that f(¢) fits all points in the dataset {(0, —2), (1,0),(2,1),(3,2)}.

The least squares version of f(t) that best fits this dataset is f(¢) = f1(¢) — 2 f2(t) + f5(¢). Find the error E in
this approximation. Record your value of E below for clarity.

Solution. An attempt to “perfectly” fit f(¢) to the data leads to the following equations.

f(O) = -2 & a-h (0) + co- fg(O) + c3- fg(O) = -2 & o 4+ e — c3 = -2
f(l) = 0 <« (SN fl(l) + co- fg(l) + Cc3 - fg(l) = 0 < C1 + ¢ + 263 = 0
f(2) = 1 & Cc1 f1 (2) + Co- f2(2) + c3- f3(2) = 1 & ¢ — Cy — 2 c3 = 1
f(?)) = 2 & - f1(3) + co- f2(3) + c3- f3(3) = 2 & g + ¢ — 2c¢c3 = 2
This is the system Ax = b where

1 1 -1 —2

1 2 0

A=11 1 b=11

1 1 2 2

~

We are told that the least squares curve is f(t) = f1(t) — 2 f2(¢) + f5(¢), which means that the solution to our
associated least squares problem ATAZ = ATbis & = [1 -2 1} T. The error in this approximation is then

E=|b-AZ|*?=[-2 0 1 2]"—[-2 1 1 1]72=|[0o -1 0 1]7*=2

E= 2

S O O



