DUKE UNIVERSITY

MATH 218D-2

Matrices and Vectors

Exam	Ι
Name:	Unique ID:
I have adhered to the Duke Community Standard in complements Signature:	eting this exam.

February 7, 2025

- There are 100 points and 5 problems on this 50-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. The equation below depicts the result of multiplying two matrices A and B.

Note that the rows of A are labeled as r_1, v, r_3, r_4, r_5 and that the columns of B are marked as b_1, b_2, v, b_4 . In particular, note that the second row of A is equal to the third column of B and this vector is labeled as v.

- (6 pts) (a) $\langle \boldsymbol{r}_1, \boldsymbol{b}_1 \rangle = \underline{\hspace{1cm}}, \langle \boldsymbol{r}_4, \boldsymbol{b}_2 \rangle = \underline{\hspace{1cm}}, \text{ and } \boldsymbol{r}_3^{\mathsf{T}} \boldsymbol{b}_4 = \underline{\hspace{1cm}}$
- (2 pts) (b) Which, if any, of the following vectors is *orthogonal* to r_5 ? Select all the apply (no partial credit).
 - \bigcirc b_1 \bigcirc b_2 \bigcirc v \bigcirc b_4 \bigcirc none of these
- (2 pts) (c) Which, if any, of the following vectors forms an obtuse angle with r_5 ? Select all the apply (no partial credit).
 - $\bigcirc b_1 \bigcirc b_2 \bigcirc v \bigcirc b_4 \bigcirc$ none of these
- (4 pts) (d) Let θ be the angle between \boldsymbol{v} and \boldsymbol{b}_4 . Then $\|\boldsymbol{v}\| \cdot \|\boldsymbol{b}_4\| \cdot \cos(\theta) = \underline{\hspace{1cm}}$.
- (6 pts) (e) $\|\boldsymbol{v}\| = \underline{\hspace{1cm}}$ and the (3,3) entry of $B^{\intercal}B$ is $\underline{\hspace{1cm}}$
- (6 pts) (g) Calculate the matrix-vector product $A(\mathbf{b}_1 + \mathbf{b}_4)$. Clearly explain your reasoning to receive credit. Fill in the blank vector at the bottom of this page to make your answer clear.

$$A(oldsymbol{b}_1+oldsymbol{b}_4)=$$

The next problem references the concept of a skew-symmetric matrix, which is any matrix A satisfying $A^{\dagger} = -A$.

Problem 2. Let v and w be two vectors in \mathbb{R}^n , both viewed as $n \times 1$ matrices. Let K be the matrix defined by the formula $K = vw^{\mathsf{T}} - wv^{\mathsf{T}}$.

(10 pts) (a) Show that K is skew-symmetric. Your solution should consist of a single string of equalities that is clear and coherent and avoids circular reasoning.

(10 pts) (b) Now, assume that ||v|| = 3, ||w|| = 5, and that v and w are orthogonal. Calculate ||Kv||. Hint. Start by simplifying Kv as far as possible before calculating the length of this vector.

(12 pts) **Problem 3.** Fill-in the blank next to each of the following matrices with the appropriate notation to indicate the first step called for by the Gauß-Jordan algorithm as articulated in class. You do not need to perform the calculation but you must use correct notation to receive credit. (No partial credit. 2pts each)

$$\begin{bmatrix} 1 & -7 & 5 & 17 & 4 \\ 0 & 0 & 0 & 6 & 10 \\ 0 & 0 & -101 & 5 & 9 \\ 0 & 0 & 13 & 2 & 5 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 3 & 7 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -3 & 7 & 13 \\ 0 & 1 & 9 & 6 & 4 \\ 0 & 0 & 0 & 17 & 6 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 7 & 19 & 4 \\ 0 & 1 & 7 & 5 & 3 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & -8 & 5 & 4 & 2 \end{bmatrix}$$

Γ156	361	373	Γ0	0	0	0
691	383	172	0	0	0	0
443	681	541	0	0	0	0
1	866	776	0	0	5	0
229	944	892	 0	0	1	0

Problem 4. The following system of linear equations is consistent and in row echelon form.

Let A be the coefficient matrix of this system.

(2 pts) (a) Which variables in this system is dependent? Select all that apply (no partial credit).

 $\bigcirc x_1 \quad \bigcirc x_2 \quad \bigcirc x_3 \quad \bigcirc x_4 \quad \bigcirc x_5$

(6 pts) (b) Which of the following statements is true? Select all that apply (1.5pts each).

 \bigcirc A is full row rank \bigcirc A is full column rank \bigcirc A is rank deficient \bigcirc $A^{\intercal}A$ is invertible

(10 pts) (c) Use back-substitution to express the general solution to this system as $\mathbf{x} = \mathbf{x}_p + c_1 \cdot \mathbf{x}_1 + c_2 \cdot \mathbf{x}_2$. Clearly explain your reasoning to receive credit. Fill in the blank vectors at the bottom of this page to make your answer clear.

$$\begin{bmatrix} & A & \\ & A & \\ & & \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 & 1 & 0 & 1 & 0 \\ -2 & -1 & 1 & -1 & 0 & 2 & -3 \\ 1 & -3 & 2 & 0 & 1 & -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 34 & -15 & 3 & -6 & -39 & 60 \\ 0 & -35 & 15 & -3 & 6 & 42 & -63 \\ 1 & -3 & 2 & 0 & 1 & -1 & -2 \end{bmatrix}$$

- (4 pts) (a) rank(A) = _____, nullity(A) = ____, and rank($A^{\mathsf{T}}A$) = _____
- (3 pts) (b) What is the last column of A?

$$\bigcirc \begin{bmatrix} 0 \\ -3 \\ -2 \end{bmatrix} \quad \bigcirc \begin{bmatrix} 60 \\ -63 \\ -2 \end{bmatrix} \quad \bigcirc \begin{bmatrix} -6 \\ 6 \\ 1 \end{bmatrix} \quad \bigcirc \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \quad \bigcirc \begin{bmatrix} -15 \\ 15 \\ 2 \end{bmatrix}$$

- (3 pts) (c) The vector $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ is an eigenvector of A corresponding to the eigenvalue $\lambda =$ _____.
- (3 pts) (d) Which of the following vectors is equal to $\begin{bmatrix} A^{-1} \\ A^{-1} \end{bmatrix} \begin{bmatrix} -39 \\ 42 \\ -1 \end{bmatrix}$?
 - $\bigcirc \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \quad \bigcirc \begin{bmatrix} 0\\-3\\-2 \end{bmatrix} \quad \bigcirc \begin{bmatrix} 0\\-3\\-2 \end{bmatrix} \quad \bigcirc \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \quad \bigcirc \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$
- (8 pts) (e) Let $\mathbf{b} = \begin{bmatrix} -15 \\ 15 \\ 102 \end{bmatrix}$. Find the solution \mathbf{x} to $A\mathbf{x} = \mathbf{b}$. Clearly explain your reasoning to receive credit. Fill in the

blank vector at the bottom of this page to make your answer clear. *Hint*. Note that $\mathbf{b} = \begin{bmatrix} -15 \\ 15 \\ 100 + 2 \end{bmatrix}$.

$$x =$$