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Problem 1. Consider the factorization _} (1) 8 73 a; ax a3 ag as| = 8 8 (1) 73 g .
01 -1 3 | | | | | 0 0 O 0 0

(5 pts) (@) Fill in every missing label in the picture of the four fundamental subspaces of A below, including the dimension
of each fundamental subspace.

P S S|
. A

(2 pts) (b) The projection matrix P onto the left null space of A satisfies trace(P)=__2 .

(2 pts) (¢) Which of the following statements correctly answers the question “Is A = 0 an eigenvalue of E?”
O No, because FE is singular. () Yes, because F is singular. () Yes, because E is nonsingular.
v/ No, because E is nonsingular. (O No, because trace(E) # 0.

(3 pts) (d) Find the pivot basis of Null(A).

Solution. The system Ax = O has five variables 1, z2, x5, 24, 5. According to R = rref(A), the free variables
are Ty = ¢1, T4 = C2, and x5 = c3. Solving for the dependent in terms of the free gives

x T2 3
X1 —5c1+3co—c3 ) 3 -1
xro C1 1 0 0
r3| = 2¢c0 —2c3| =¢1 - O] +co- |2 +c3- |—2
Ty Co 0 1 0
Ts5 c3 0 0 1

The “pivot basis” of Null(4) is {x1, x2, 3}.

(2 pts) (e) Let R’ be the matrix obtained by deleting all of the rows of zeros from R. Which (if any) of the following
formulas for C satisfies the equation A = CR'?

O C=|a1 a O C=lax a4 as O C=lax a4 vV C= a1 a3 (O None of these.
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Solution. Following the algorithm from class, we have
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(10 pts) Problem 2. Calculate PA
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10 0 0]
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0010
00 0 1
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00 01
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0 01 0

01 0 0

0 0 01
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0 01 0
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00 0 0]
1.0 0 0
2.0 0 0
4.0 0 0
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T2 + T — T2
rs + 211 = r3
ry — 41 = 1y

-3 6
3 =7
3 —12
6 22
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T2<>T3
AT

r4+6-1ro—1ry

ry—2-r3 =Ty

This gives our desired factorization
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1 0 1 -3 -5
. . e 1 1 2 -2 =3

(6 pts) Problem 3. Find a matrix B satisfying Null(B) = Col(A) where A = 9 1 3 -4 gl
-1 -1 =2 3 S

Solution. The criteria for b= [b1 by b3 by] " to be in Col(A) is that the augmented matrix [A | b] is a consistent
system. The consistency of this system is resolved with row reductions

1 0 1 -3 =5|b] re= m=m [1 0 1 -3 =5 by ]
1 1 2 =2 3|b| 23?3 o 1 1 1 2| —b+b
2 1 3 —4 —6|bs 10 1 1 2 4| —2b +bs
1 -1 -2 3 5|b 0 -1 -1 0 0 by + by
1 01 -3 -5 by ]

mrmIe o112 —by + by

1000 0 1 2| —by — by + by

000 1 2 by + b

101 -3 -5 by ]

raerasra |01 1 1 2 —b1 + by

000 1 2 —by — by + bs

00 0 0 0|by+2by—by+by]

Here, we find that whether or not [A | b] is consistent is identical to the question of whether or not by +2 ba —b3+bs = 0.
This means that Col(4) = Null(B) where B=[1 2 -1 1].

Problem 4. Suppose B = |v1 v2 wv3| isn x 3 and A is m x n such that {Avy, Avy, Avs} is independent.

(5 pts) (@) Show that {v1,vs,v3} is independent.
Solution. Suppose that ¢y - v1 + ¢ - v2 + ¢3 - v3 = O. Multiplying by A gives

c1-Avy +co - Avy +c3- Avs =0

We are told that {Av;, Avs, Avs} is independent, so we must have ¢; = ¢o = ¢5 = 0.

(5 pts) (b) The data from this problem along with the result from part (a) allows us to infer which of the following
statements? Select all that apply (one point each).

v/ B has full column rank / rank(AB) =3 (O B has full row rank

O AB has full row rank 4/ nullity(B) =0
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(10 pts) Problem 5. Use the Gram-Schmidt algorithm to calculate @ in A = QR where A=| 0 0 -3
-2 -2 —4
-2 —6 0
Solution. Call the columns v, vy, v3 and start with
0
1
wp = V1 = 0
—2
-2
The formula for wo is wy = vo — projwl(vg), which is
1 0 1
2 1 0
18
wgzvg—wwlzvg——wlz 0] —2 0= 0
(w1, wr) 9 —92 —92 )
—6 -2 -2
The formula for wj is w3 = v3 — proj,, (vs) — proj,,, (vs), which is
-1 0 1 0
1 1 0 0
_ <v37 w1> <'U37'U}2> _ 9 _9 o o
w3 = V3 — w1 — Wo = V3 — —W1 — — Wy = =3 — 0| + 0] =1]-3
<w17w1> <w27w2> 9 9 —4 —92 2 0
0 -2 -2 0
The columns of ) are the normalizations of these vectors.
0 1 0
1 1 é 1 1 8 1 1 g
q :7w1:— q :71,02 q :71_1_}3 —
E | 31 9 27 [l 31 o 5 Jws]| 31 o
-2 -2 0
This gives
0 1 0
1 1 0 0
Q==| 0 0 -3
3l 2 0
-2 =2 0



Problem 6. The equation below depicts A = QR where A is the incidence matrix of a directed graph G along with

a vector b.
Q
- V2/2 0 0 R 0
V2/2 0 0| [V2 —v2 =« x 0 0
A = 0 —-v2 -6/ 0 0 V2 %% b= |2
0 V22 —V6/6 0 0 0 V62 =« 0
0 0 V6/3 1

Note that the matrix R is missing several entries marked as *.
(6 pts) (a) Calculate ho(G) and hi(G). Show your work in the space provided and fill in your answers in the blanks below.

Solution. The given equation is A = QR where @ is 5 X 3 and R is 3 x 5. This tells us that A is 5 x 5 with
rank three. The picture of the four fundamental subspaces is

From class we know that ho(G) = dim Null(AT) and h;(G) = dim Null(A4).
ho(G)=__2 h(G)=_2
(6 pts) (b) Find the projection of b onto Col(A). Use this projection to decide if Az = b is consistent.

Solution. From class we know that the projection matrix onto Col(A) is P = QQT. Our desired projection is

then
Q
QT 0 - \/5/2 0 0
~Vaf2 V3jo 0 0 0]lo V3/2 0 0 0
Pb = Q 0 0 -2/ V2/2 of [2| = 0 —v2k —V6l||—V2]| =
0 0 —-v6/6 —+vG/6 V63| |0 0 V2/2 =66 0
1 0 0 V6/3

Our equation shows that Pb # b, so Ax = b is inconsistent.

O~ Rk OO



(7 pts) Problem 7. Consider the matrix Q = Q1Q2 where Q1 is m X n with orthonormal columns and Qs is n x ¢ with
orthonormal columns. Show that @ has orthonormal columns.

Solution. We are told that 1 and Q2 have orthonormal columns, which means that Q1Qy = I,, and QIQ2 = I,.
We wish to show that @ = Q@2 has orthonormal columns. To do so, note that

QTR = (Q1Q2)T(Q1Q2) = QIQTQ1Q2 = QI1,Q2: = QIQ2 = I,

(7 pts) Problem 8. Let P be the projection matrix onto V' = Span[l —1 —1 1]7,[1 0 -1 1]". The projection
formula expresses P as the product of three matrices as follows.

11
1 o|[1 -1]1 -1 -1 1
P -1 -1 [1 4/3} [1 0 -1 1}
11

Fill in the missing entries of these three matrices.

Solution. The projection formula is P = X (XTX) !XT where the columns of X form a basis of V. The vector
space V is defined as the span of two nonparallel vectors, so these two vectors form a basis. We need only calculate

(XTX)~L.
X
e 1 1
1 -1 -1 1|{-1 0 4 3 11 3 -3 1 -1
_ T -1 _ = _
[1 0 -1 1} -1 -1 [3 3] (X7X) 3[—3 4}{—1 4/3]
1 1

Here, we have used the adjugate formula for 2 x 2 inverses.



(7 pts) Problem 9. Suppose that A is a 3 x 3 complex matrix satisfying A* = i A and consider the vectors v,w € C?

satisfying
—4 -2 1—1 2
v=| 4-23 w = T Av = |21
—1—i 141 2
Find (v, Aw).
Solution. Here, we have
(v, Aw) = (A*v, w)
= (i Av,w)
=i (Av,w)

=—i-([2 20 2]T,[1—i i 1+44]")
=—i-{2-(1—49)+2i-i+2-(1+14)}
=—i-{2-(1—i)—2i-i+2 (1+1i)}
=—i-{2—-2i—2i®+2+42i}
=—i-{2-2i+2+2+2i}

= —i-{6}

=—6i

(7 pts)Problem 10. The data below depicts a system of linear equations along with three determinant calculations.

3z + Sy — 11z = —4 3 5 —11 -4 5 —11 3 5 —4
r + y — 4z = 0 1 1 —4{=-4 0 1 —4{ =100 1 1 0| =24
T — y — 3z = =8 1 -1 -3 -8 -1 =3 1 -1 -8

Fill in the blanks below with the values of z, y, and z that solve this system (each of these values will simplify to an
integer quantity).

r=_—25 Y= 1 z=_—6

Use the space below for any necessary scratch work.

Solution. In the notation for Cramer’s rule, we are given the system Az = b along with det(A4) = —4, det(A;) = 100,
and det(Asz) = 24. Immediately we find x = (Lcst(&l)) =10 = —25and z = zcett((z?f)) = 24 = —6. We'll need to then
calculate det(As) to find y.

Az
3 -4 —11 3 -4 —11 _
10 —4ffe=Zmors | g0 g Sk (4)‘5 19’4.(1920)4
1 -8 -3 5 0 19

It follows that y = ‘ifett((“‘;)) = }j —1.



(10 pts)Problem 11. Find bases of all eigenspaces of A= |-3 -3  5]|.

Solution. We must start by finding the eigenvalues of A, which requires us to factor the characteristic polynomial.

t—6 -6 4
xat)=| 3 t+3 -5 M(t—f&)’
0 0 t—3

t—6 —6
3 t+3

‘ = (t—3){(t+3)(t —6)+18) = (t—3){t2— 3t} = (t — 3)*

This demonstrates that E-Vals(A4) = {0,3}. For A = 0, the eigenspace is

0-I3—A
-6 —6 4
E4(0)=Null | 3 3 —5| =Spang [—1
0 0 -3 0
For A = 3, the eigenspace is
3.I3—A
-3 -6 4 2

Ea3)=Null| 3 6 —5|=Span{ |1
0 0 0 0



