## DUKE UNIVERSITY

## Матн 218D-2

MATRICES AND VECTORS

## Exam I

Name:

Unique ID:

Solutions

I have adhered to the Duke Community Standard in completing this exam. Signature:

July 18, 2024

- There are 100 points and 10 problems on this 100-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.



**Problem 1.** Suppose that A is a matrix satisfying the matrix-vector product

$$A \qquad \int \begin{bmatrix} \mathbf{v} \\ -1 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 0 \\ -1 \end{bmatrix}.$$

- (2 pts) (a) The matrix A has <u>5</u> rows and <u>4</u> columns.
- (3 pts) (b) Which of the following vectors is orthogonal to the vector v?

 $\bigcirc$  1st row of A  $\bigcirc$  2nd row of A  $\bigcirc$  3rd row of A  $\checkmark$  4th row of A  $\bigcirc$  3rd column of A

(3 pts) (c) Which of the following vectors forms an *acute* angle with  $\boldsymbol{v}$ ?

 $\sqrt{1 \text{st row of } A}$   $\bigcirc$  2nd row of A  $\bigcirc$  3rd row of A  $\bigcirc$  4th row of A  $\bigcirc$  3rd column of A

- $(4 \text{ pts}) (d) \text{ Fill in the entries of this matrix product:} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 & -2 \\ 2 & 4 & 0 & 4 \\ 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix}$
- (4 pts) (e) Calculate  $\langle A^{\mathsf{T}} \boldsymbol{w}, \boldsymbol{v} \rangle$  where  $\boldsymbol{w} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$ . Clearly explain your reasoning to receive credit. Solution. Here we use the adjoint formula

$$\langle A^{\mathsf{T}}\boldsymbol{w},\boldsymbol{v}\rangle = \langle \boldsymbol{w},A\boldsymbol{v}\rangle = \langle \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & -2 & -1 & 0 & -1 \end{bmatrix}^{\mathsf{T}}\rangle = -3$$

(6 pts) **Problem 2.** Let  $S = A^{\intercal}A + BCB$  where A is a  $5 \times 2024$  matrix and B and C are  $2024 \times 2024$  symmetric matrices. Show that S is symmetric.

**Solution.** We are given that B and C are symmetric, which means  $B^{\intercal} = B$  and  $C^{\intercal} = C$ . To demonstrate that S is symmetric, we must show that  $S^{\intercal} = S$ . To do so, note that

$$S^{\mathsf{T}} = (A^{\mathsf{T}}A + BCB)^{\mathsf{T}} = (A^{\mathsf{T}}A)^{\mathsf{T}} + (BCB)^{\mathsf{T}} = A^{\mathsf{T}}(A^{\mathsf{T}})^{\mathsf{T}}B^{\mathsf{T}}C^{\mathsf{T}}B^{\mathsf{T}} = A^{\mathsf{T}}A + BCB = S$$

(5 pts) **Problem 3.** Suppose that v,  $w_1$ , and  $w_2$  are vectors in  $\mathbb{R}^n$  such that v is orthogonal to both  $w_1$  and  $w_2$ . Let  $w = c_1 \cdot w_1 + c_2 \cdot w_2$ . Show that v is orthogonal to w.

You must avoid circular reasoning to receive credit.

**Solution.** We are told that  $\boldsymbol{v}$  is orthogonal to  $\boldsymbol{w}_1$  and  $\boldsymbol{w}_2$ , so

$$\langle \boldsymbol{v}, \boldsymbol{w}_1 \rangle = 0$$
  $\langle \boldsymbol{v}, \boldsymbol{w}_2 \rangle = 0$ 

We wish to demonstrate that  $\boldsymbol{v}$  is orthogonal to  $\boldsymbol{w}$ , which requires us to validate the equation  $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0$ . To do so, note that

 $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{v}, c_1 \cdot \boldsymbol{w}_1 + c_2 \cdot \boldsymbol{w}_2 \rangle = c_1 \cdot \langle \boldsymbol{v}, \boldsymbol{w}_1 \rangle + c_2 \cdot \langle \boldsymbol{v}, \boldsymbol{w}_2 \rangle = c_1 \cdot 0 + c_2 \cdot 0 = 0$ 

(5 pts) **Problem 4.** Suppose that A is  $n \times n$  and that  $\boldsymbol{v} \in \mathcal{E}_A(\lambda)$  and let  $X_{\lambda} = \lambda \cdot I_n - A$ . Calculate  $X_{\lambda}\boldsymbol{v}$ . Clearly explain your reasoning to receive credit.

**Solution.** We are told that  $v \in \mathcal{E}_A(\lambda)$ , which means  $Av = \lambda \cdot v$ . It follows that

 $X_{\lambda}\boldsymbol{v} = (\lambda \cdot I_n - A)\boldsymbol{v} = \lambda \cdot \boldsymbol{v} - A\boldsymbol{v} = \lambda \cdot \boldsymbol{v} - \lambda \cdot \boldsymbol{v} = \boldsymbol{O}$ 

(10 pts) **Problem 5.** Consider the matrix A given by

$$A = \begin{bmatrix} 2 & -2 & 2 & 4 & 4 & 6 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 1 & -1 & 1 & 2 & 3 & 4 \\ 0 & -2 & 2 & 2 & 0 & 2 \\ 0 & 1 & -1 & -1 & 0 & -1 \end{bmatrix}$$

Use the Gauß-Jordan algorithm to calculate  $\operatorname{rref}(A)$ .

You must label each row reduction properly and adhere to the steps of the algorithm to receive credit.

Solution. Following the algorithm, we have

 $\begin{bmatrix} 2\\0\\1\\0\\0 \end{bmatrix}$ 

(10 pts) **Problem 6.** Calculate PA = LU for  $A = \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 0 & 0 & 3 & 5 \\ -2 & -2 & 2 & -4 & 2 \\ 4 & 7 & 1 & 2 & 7 \end{bmatrix}$ .

Solution. Following the algorithm from class, we have

$$\begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 0 & 0 & 3 & 5 \\ -2 & -2 & 2 & -4 & 2 \\ 4 & 7 & 1 & 2 & 7 \end{bmatrix} \xrightarrow{r_3 + r_1 \to r_3} \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 3 & 5 & -3 & 5 \\ 0 & -3 & -5 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 3 & 5 & -3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & -3 & -5 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{r_4 + r_2 \to r_4} \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 3 & 5 & -3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & -3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{r_4 + r_3 \to r_4} \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 3 & 5 & -3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

This gives our desired factorization

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 0 & 0 & 3 & 5 \\ -2 & -2 & 2 & -4 & 2 \\ 4 & 7 & 1 & 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 3 & 1 & 3 \\ 0 & 3 & 5 & -3 & 5 \\ 0 & 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 & 11 \end{bmatrix}$$

**Problem 7.** Consider the matrices A, B, and Y given by

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 3 \\ -2 & -2 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -1 & 0 & 1 \\ -2 & 1 & 0 & -1 \\ -2 & 1 & 1 & 0 \end{bmatrix} \qquad Y = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(5 pts) (a) Calculate AB. The matrix AB is  $\underline{4} \times \underline{4}$  and trace(AB) =  $\underline{3}$ .

Solution. 
$$\begin{bmatrix} A \\ 1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 3 \\ -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} 3 & -1 & 0 & 1 \\ -2 & 1 & 0 & -1 \\ -2 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & -2 & -1 \\ -2 & 2 & 3 & 1 \\ 2 & -2 & -2 & 0 \end{bmatrix}$$

(5 pts) (b) Calculate BA. The matrix BA is  $3 \times 3$  and trace(BA) = 3.

Solution. 
$$\begin{bmatrix} 3 & -1 & 0 & 1 \\ -2 & 1 & 0 & -1 \\ -2 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 3 \\ -2 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(5 pts) (c) If possible, find a matrix X satisfying XA = Y. If this is not possible, then explain why. Solution. Our work above tells us that

$$BA = I_3$$

Since Y is  $5 \times 3$ , we can multiply this equation on the left by Y to obtain

$$YBA = YI_3 = Y$$

So, the matrix

$$X = \begin{bmatrix} Y \\ 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 & 0 & 1 \\ -2 & 1 & 0 & -1 \\ -2 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 0 & 2 \\ -1 & 1 & 1 & 0 \\ -4 & 2 & 1 & -1 \\ 1 & 0 & 1 & 1 \\ -2 & 1 & 1 & 0 \end{bmatrix}$$

satisfies XA = Y.

**Problem 8.** Consider the EA = R factorization and the vector **b** given by

| E                                              | A                                                       | R                                                                                      |          |
|------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|----------|
| $\begin{bmatrix} 1 & -2 & 2 & 1 \end{bmatrix}$ | $0 ] \begin{bmatrix} 0 & 0 & 0 & 1 & -4 \end{bmatrix}$  | $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 & -6 & -2 & 0 & -5 \end{bmatrix}$   | 5 0] [1] |
| 0 1 -2 -1                                      | 0   -1  6  2  0  5                                      | $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 & -4 \end{bmatrix}$ | 4 0 1    |
| 0 1 -1 0                                       | 0   -1 * 2 0 5                                          | 000000000000000000000000000000000000                                                   | b = 0    |
| 0 -1 1 1 -                                     | $1 \mid 1 - 6 - 2 - 1 - 1$                              |                                                                                        | 0 0      |
| -1 1 $-2$ 0 $-$                                | $1 \begin{bmatrix} 1 & -6 & -2 & -1 & -1 \end{bmatrix}$ |                                                                                        | ) 0 0    |

Note that the (3, 2) entry of A is unknown and marked as \*.

(2 pts) (a) Which columns of A are the *pivot columns*? Select all that apply (no partial credit).

- $\checkmark$  1st column  $\bigcirc$  2nd column  $\bigcirc$  3rd column  $\checkmark$  4th column  $\bigcirc$  5th column  $\checkmark$  6th column
- (2 pts) (b) The unknown (3,2) entry of A is  $* = \underline{6}$ .
- (4 pts) (c) In class we demonstrated that representing the steps of the Gauß-Jordan algorithm with elementary matrices allows E to be expressed as the product of elementary matrices  $E = E_k \cdots E_3 E_2 E_1$ . Find  $E_1$ . Solution. The first step of the Gauß-Jordan algorithm in row-reducing A is  $\mathbf{r}_1 \leftrightarrow \mathbf{r}_2$ . Since A is  $5 \times 6$ ,  $E_1$  is

the matrix obtained by applying  $r_1 \leftrightarrow r_2$  to  $I_5$ . This gives

|    |   | 15 |   |   |                                                                      |   |   | $E_1$ |   |   |
|----|---|----|---|---|----------------------------------------------------------------------|---|---|-------|---|---|
| [1 | 0 | 0  | 0 | 0 |                                                                      | 0 | 1 | 0     | 0 | 0 |
| 0  | 1 | 0  | 0 | 0 |                                                                      | 1 | 0 | 0     | 0 | 0 |
| 0  | 0 | 1  | 0 | 0 | $rac{oldsymbol{r}_1\leftrightarrowoldsymbol{r}_2}{\longrightarrow}$ | 0 | 0 | 1     | 0 | 0 |
| 0  | 0 | 0  | 1 | 0 |                                                                      | 0 | 0 | 0     | 1 | 0 |
| 0  | 0 | 0  | 0 | 1 |                                                                      | 0 | 0 | 0     | 0 | 1 |

(5 pts) (d) Determine if the system  $A\mathbf{x} = \mathbf{b}$  is consistent. Clearly explain your reasoning to receive credit. Solution. We discussed in class that the system  $[A \mid \mathbf{b}]$  reduces to  $[R \mid E\mathbf{b}]$ , which is

| [1 | -6 | -2 | 0 | -5 | 0 | -1 |
|----|----|----|---|----|---|----|
| 0  | 0  | 0  | 1 | -4 | 0 | 1  |
| 0  | 0  | 0  | 0 | 0  | 1 | 1  |
| 0  | 0  | 0  | 0 | 0  | 0 | -1 |
| 0  | 0  | 0  | 0 | 0  | 0 | 0  |

There is a pivot in the augmented column, so the system Ax = b is *inconsistent*.

**Problem 9.** Consider the PA = LU factorization and the vector **b** given by

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & -44 & -16 & 14 & 35 & -5 \\ 0 & 0 & 0 & 0 & -8 & -7 \\ 0 & 0 & 0 & -5 & -73 & 3 \\ 0 & -13 & -3 & -14 & 39 & -1 \\ 3 & 57 & 19 & 5 & 7 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 57 & 19 & 5 & 7 & 10 \\ 0 & 13 & 3 & 19 & 42 & 5 \\ 0 & 0 & 0 & 5 & 81 & 4 \\ 0 & 0 & 0 & 0 & 8 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -3 & -44 & -16 & 14 & 35 & -5 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

(3 pts) (a) In the system  $A\mathbf{x} = \mathbf{O}$ , which of the following variables are *free*? Select all that apply (no partial credit).  $\bigcirc x_1 \ \bigcirc x_2 \ \sqrt{x_3} \ \bigcirc x_4 \ \bigcirc x_5 \ \sqrt{x_6}$ 

(6 pts) (b) Determine if the system  $A\mathbf{x} = \mathbf{b}$  is consistent. Clearly explain your reasoning to receive credit. Solution. We demonstrated in class that the system  $A\mathbf{x} = \mathbf{b}$  is solved by first solving  $L\mathbf{y} = P\mathbf{b}$  for  $\mathbf{y}$ , which is

$$y_1 = 0$$
  
-y\_1 + y\_2 = -3 \leftarrow y\_2 = -3  
-y\_2 + y\_3 = 0 \leftarrow y\_3 = -3  
-y\_3 + y\_4 = 1 \leftarrow y\_4 = -2  
-y\_4 + y\_5 = -1 \leftarrow y\_5 = -3

This gives  $\boldsymbol{y} = \begin{bmatrix} 0 & -3 & -3 & -2 & -3 \end{bmatrix}^{\mathsf{T}}$ . In augmented form, system  $U\boldsymbol{x} = \boldsymbol{y}$  is then

| 3 | 57 | 19 | 5  | 7  | 10 | 0  |
|---|----|----|----|----|----|----|
| 0 | 13 | 3  | 19 | 42 | 5  | -3 |
| 0 | 0  | 0  | 5  | 81 | 4  | -3 |
| 0 | 0  | 0  | 0  | 8  | 7  | -2 |
| 0 | 0  | 0  | 0  | 0  | 0  | -3 |

There is a pivot in the augmented column, so our system is *inconsistent*.

**Problem 10.** The data below depicts the inverse of a matrix A and a vector b.

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & -3 & -2 \\ 0 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 1 & 3 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

(3 pts) (a) The matrix A has  $\operatorname{rank}(A) = \underline{5}$ ,  $\operatorname{nullity}(A) = \underline{0}$ , and  $\operatorname{nullity}(A^{\intercal}) = \underline{0}$ .

(4 pts) (b) Find all solutions to the system  $A\mathbf{x} = \mathbf{b}$ . Clearly explain your work to receive credit. Solution. The matrix A is invertible so  $A\mathbf{x} = \mathbf{b}$  has exactly one solution given by

$$\boldsymbol{x} = \begin{bmatrix} A^{-1} & b \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & -3 & -2 \\ 0 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} b \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

(4 pts) (c) Find the second column of A. Clearly explain your work to receive credit.Solution. This is the same as asking for the value of

$$\begin{bmatrix} & & \\ & A \\ & & \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

We are given  $A^{-1}$ , which is defined by the property

$$\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & -3 & -2 \\ 0 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The third column of  $A^{-1}$  is  $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ , which tells us that

$$\begin{bmatrix} & A \\ & & \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$