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Problem 1. Suppose that A is a matrix satisfying the matrix-vector product A ol = —11.
0
! -1

(2 pts) (a) The matrix Ahas __ 5  rowsand 4  columns.

(3 pts) (b) Which of the following vectors is orthogonal to the vector v?

O Istrowof A (O 2ndrowof A (O 3rdrowof A / 4throwof A (O 3rd column of A

(3 pts) (¢) Which of the following vectors forms an acute angle with v?

v Istrowof A (O 2ndrowof A (O 3rdrowof A (O 4throwof A (O 3rd column of A

-1 -2 0 -2

R 2 40 4

(4 pts) (d) Fill in the entries of this matrix product: A 0o o0 o= 1 20 2
1 =2 0 -2 0000

2 0 2

(4 pts) (e) Calculate (ATw,v) wherew =[1 1 1 1 1]7. Clearly explain your reasoning to receive credit.

Solution. Here we use the adjoint formula

(ATw,v) = (w,Av)=([1 1 1 1 1]"/[1 =2 -1 0 -1]")=-3

(6 pts) Problem 2. Let S = ATA+ BCB where A is a 5 x 2024 matrix and B and C' are 2024 x 2024 symmetric matrices.
Show that S is symmetric.

Solution. We are given that B and C' are symmetric, which means BT = B and C'T = C. To demonstrate that S
is symmetric, we must show that ST = S. To do so, note that

ST = (ATA+ BCB)T = (ATA)T 4+ (BCB)T = AT(AT)TBTCTBT = ATA+ BCB = §



(5 pts) Problem 3. Suppose that v, w;, and ws are vectors in R™ such that v is orthogonal to both w; and ws. Let
w = ¢1 - w1 + ¢2 - we. Show that v is orthogonal to w.

You must avoid circular reasoning to receive credit.

Solution. We are told that v is orthogonal to w; and ws, so
<U7w1> =0 <’U,’I.U2> =0

We wish to demonstrate that v is orthogonal to w, which requires us to validate the equation (v, w) = 0. To do so,
note that
(v,w) = (v,01 - w1 +ca-wa) =c1 - (V,w1)+co- (V,wa) =c1-0+c2-0=0

(5 pts) Problem 4. Suppose that A is n x n and that v € £4(\) and let X = A - I,, — A. Calculate X v. Clearly explain
your reasoning to receive credit.

Solution. We are told that v € £4()), which means Av = X - v. It follows that

Xyow=W\I,-Av=Nv-—Av=N-v-X-v=0



(10 pts) Problem 5. Consider the matrix A given by

2 =2 2 4 4 6
0 0 0 0 -1 -1
A=|1 -1 1 2 3 4
0 -2 2 2 0 2
0 1 -1 -1 0 -1

Use the GauB-Jordan algorithm to calculate rref(A).

You must label each row reduction properly and adhere to the steps of the algorithm to receive credit.

Solution. Following the algorithm, we have

A
2 -2 2 4 4 6 -1 2 3
0O 0 0 0 -1 P 0 0 —1 -1
1 -1 1 2 3 e, -1 2 4
0 -2 2 2 0 2 -2 2
0 1 -1 -1 0 -1 1 -1 - -1
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Solution. Following the algorithm from class, we have

LU for A

(10 pts) Problem 6. Calculate PA
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This gives our desired factorization



Problem 7. Consider the matrices A, B, and Y given by

1
Lo P 1
A= B=|-2 10 -1 Y = |0
2 1 2 11 0 1
-2 -2 =2
0
(5 pts) (a) Calculate AB. The matrix ABis __ 4 x__ 4  and trace(AB)=__3 .
A B
N 1 0 0 0
Soluti o 1 2| 5 T, ]2 -1 -2
B 1 e R A
-2 -2 =2 2 -2 =2 0
(5 pts) (b) Calculate BA. The matrix BAis __ 3 x_ 3  andtrace(BA)=__3 .
. A
3 -1 0 1 (1) } 7(2) 100
Solution. |—2 1 0 -1 9 1 3| = 0 1 0
=2 11 o) 5 , 5 oo

(5 pts) (¢) If possible, find a matrix X satisfying X A =Y. If this is not possible, then explain why.

Solution. Our work above tells us that
BA =15

Since Y is 5 X 3, we can multiply this equation on the left by Y to obtain

YBA=YI;=Y

So, the matrix

Y
1 -1 0 B 5 -2 0 2
1 1 1|[3 -1 0 1 -1 11 0
X=10 1 1{|-2 10 -1|=]-4 2 1 -1
1 0 1||-2 11 o0 1 01 1
0 0 1 2 11 0

satisfies XA =Y.

OO~ ~ =
e e =)



Problem 8. Consider the FA = R factorization and the vector b given by

E A R
1 -2 2 1 0 0 0 0 1 -4 1 1 -6 -2 0 -5 0 1
0 1 -2 -1 0f|—-1 6 2 0 5 1 0 0 01 -4 0 1
0 1 -1 0 0f|—-1 * 2 0 5 0f =10 0 0 0 0 1 b= |0
0 -1 1 1 -1 1 -6 -2 -1 -1 1 0 0 0 0 0 0 0
-1 1 -2 0 -1 1 6 -2 -1 -1 0 0 0 0 0 0 0 0

Note that the (3,2) entry of A is unknown and marked as *.
(2 pts) (@) Which columns of A are the pivot columns? Select all that apply (no partial credit).

v/ 1st column O 2nd column (O 3rd column 4/ 4th column (O 5th column +/ 6th column

(2 pts) (b) The unknown (3,2) entry of Ais x=__6 .

(4 pts) (¢) In class we demonstrated that representing the steps of the GauB-Jordan algorithm with elementary matrices
allows E to be expressed as the product of elementary matrices £ = Ey, - -- E3FEoF4. Find Ej.
Solution. The first step of the Gaufi-Jordan algorithm in row-reducing A is r1 <> r5. Since A is 5 X 6, Fy is
the matrix obtained by applying r1 <> 72 to I5. This gives

Is By
1 0000 01000
01000 100 00
001 0 0 22100100
00010 00010
00001 00001

(5 pts) (d) Determine if the system Ax = b is consistent. Clearly explain your reasoning to receive credit.
Solution. We discussed in class that the system [A | b] reduces to [R | Eb], which is

1 -6 -2 0 =5 0|-1
0 0 01 -4 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0] -1
0 0 0 0 0 0 0

There is a pivot in the augmented column, so the system Ax = b is inconsistent.



Problem 9. Consider the PA = LU factorization and the vector b given by

P A L U
00 0 0 1|](-3 —44 -16 14 35 -5 1 0 0 0 0|3 57 19 5 7 10
100 00 0 0 0 0 -8 -7 -1 1 0 0 0|0 13 3 19 42 5
00 010 0 0 0 -5 -—-73 3= 0 -1 1 0 0|0 0 O &5 81 4| b=
001 00 0 -13 -3 -14 39 -1 0 0 -1 1 00 0 0 O 8 7
01 0 00 3 o7 19 ) 7 10 o o0 0 -1 10 0 O O 0 O

(3 pts) (@) In the system Az = O, which of the following variables are free? Select all that apply (no partial credit).
Oz Oz Vazs Ouxa Oz Voo
(6 pts) (b) Determine if the system Ax = b is consistent. Clearly explain your reasoning to receive credit.

Solution. We demonstrated in class that the system Axz = b is solved by first solving Ly = Pb for y, which is

y1 =0
Y1ty =-3y2=-3
—y2t+ys=0+y3s=-3
—Ystys=1l<¢ys=-2
—Yat+ys=—1ys=-3

This gives y = [0 -3 -3 -2 —3]T. In augmented form, system Ux = y is then

3 57 19 5 7 10 0
0 13 3 19 42 5| -3
0 0 0 5 8 4]-3
0O 0 0 0 8 7|-=-2
0O 0 0O 0O 0 O0]-3

There is a pivot in the augmented column, so our system is inconsistent.



Problem 10. The data below depicts the inverse of a matrix A and a vector b.

1 00 1 2 1
0 1 1 -3 -2 1
At=]1 0 -1 0 3 -1 b= |1
-1 00 0 -3 0

1 00 1 3 0

(3 pts) (@) The matrix A has rank(A)=__5  nullity(A)=__0 , and nullity(AT)=__0 .

(4 pts) (b) Find all solutions to the system Az = b. Clearly explain your work to receive credit.

Solution. The matrix A is invertible so Az = b has exactly one solution given by

AT? b
1 0 0 1 21 (1 1
0 1 1 -3 -2|]|1 2
z=| 0 -1 0 3 —1||1|=]|-1
—1 0 0 0 —=3[10 -1
1 0 0 1 3110 1
(4 pts) (¢) Find the second column of A. Clearly explain your work to receive credit.
Solution. This is the same as asking for the value of
0
1
A 0
0
0
We are given A~!, which is defined by the property
ATt I5
1 00 1 2 100 00
0 1 1 -3 =2 01 00O
A 0 -1 0 3 —1{=10 0 1 0 O
-1 0 0 -3 0 0 0 1 0
1 00 1 3 0 0 0 01

The third column of A™! is [O 1 00 O]T, which tells us that

b
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