DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam I

Name:

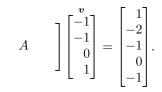
Unique ID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

July 18, 2024

- There are 100 points and 10 problems on this 100-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

Problem 1. Suppose that A is a matrix satisfying the matrix-vector product



Γ

- (2 pts) (a) The matrix A has _____ rows and _____ columns.
- (3 pts) (b) Which of the following vectors is *orthogonal* to the vector v?

 \bigcirc 1st row of A \bigcirc 2nd row of A \bigcirc 3rd row of A \bigcirc 4th row of A \bigcirc 3rd column of A

(3 pts) (c) Which of the following vectors forms an *acute* angle with v?

 \bigcirc 1st row of A \bigcirc 2nd row of A \bigcirc 3rd row of A \bigcirc 4th row of A \bigcirc 3rd column of A

(4 pts) (d) Fill in the entries of this matrix product:
$$\begin{bmatrix} & A \\ & & \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & 0 & -2 \end{bmatrix} = \begin{bmatrix} & & & \\ & & & & \\ & &$$

(4 pts) (e) Calculate $\langle A^{\mathsf{T}} \boldsymbol{w}, \boldsymbol{v} \rangle$ where $\boldsymbol{w} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$. Clearly explain your reasoning to receive credit.

(6 pts) **Problem 2.** Let $S = A^{\intercal}A + BCB$ where A is a 5×2024 matrix and B and C are 2024×2024 symmetric matrices. Show that S is symmetric.

(5 pts) **Problem 3.** Suppose that v, w_1 , and w_2 are vectors in \mathbb{R}^n such that v is orthogonal to both w_1 and w_2 . Let $w = c_1 \cdot w_1 + c_2 \cdot w_2$. Show that v is orthogonal to w.

You must avoid circular reasoning to receive credit.

(5 pts) **Problem 4.** Suppose that A is $n \times n$ and that $\boldsymbol{v} \in \mathcal{E}_A(\lambda)$ and let $X_{\lambda} = \lambda \cdot I_n - A$. Calculate $X_{\lambda}\boldsymbol{v}$. Clearly explain your reasoning to receive credit.

(10 pts) **Problem 5.** Consider the matrix A given by

$$A = \begin{bmatrix} 2 & -2 & 2 & 4 & 4 & 6 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 1 & -1 & 1 & 2 & 3 & 4 \\ 0 & -2 & 2 & 2 & 0 & 2 \\ 0 & 1 & -1 & -1 & 0 & -1 \end{bmatrix}$$

Use the Gauß-Jordan algorithm to calculate $\operatorname{rref}(A)$.

You must label each row reduction properly and adhere to the steps of the algorithm to receive credit.

	2	5	3	1	3	
(10 pts) Problem 6. Calculate $PA = LU$ for $A =$	0	0	0	3	5	
	-2	-2	2	-4	2	•
	4	$\overline{7}$	1	2	7	

Problem 7. Consider the matrices A, B, and Y given by

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & 1 & 3 \\ -2 & -2 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -1 & 0 & 1 \\ -2 & 1 & 0 & -1 \\ -2 & 1 & 1 & 0 \end{bmatrix} \qquad Y = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(5 pts) (a) Calculate AB. The matrix AB is $___ \times __$ and trace(AB) = $__$.

(5 pts) (b) Calculate BA. The matrix BA is $___ \times __$ and trace(BA) = $__$.

(5 pts) (c) If possible, find a matrix X satisfying XA = Y. If this is not possible, then explain why.

Problem 8. Consider the EA = R factorization and the vector **b** given by

Note that the (3, 2) entry of A is unknown and marked as *.

(2 pts) (a) Which columns of A are the *pivot columns*? Select all that apply (no partial credit).

- \bigcirc 1st column \bigcirc 2nd column \bigcirc 3rd column \bigcirc 4th column \bigcirc 5th column \bigcirc 6th column
- (2 pts) (b) The unknown (3, 2) entry of A is * =____.
- (4 pts) (c) In class we demonstrated that representing the steps of the Gauß-Jordan algorithm with elementary matrices allows E to be expressed as the product of elementary matrices $E = E_k \cdots E_3 E_2 E_1$. Find E_1 .

(5 pts) (d) Determine if the system $A\mathbf{x} = \mathbf{b}$ is consistent. Clearly explain your reasoning to receive credit.

Problem 9. Consider the PA = LU factorization and the vector **b** given by

P	A	L	U	
$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix}$	$-44 \ -16 \ 14 \ 35 \ -5$	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 3 & 57 & 19 & 5 & 7 & 10 \end{bmatrix}$ $\begin{bmatrix} -3 \end{bmatrix}$]
1 0 0 0 0 0	0 0 0 -8 -7	-1 1 0 0 0	$\begin{bmatrix} 0 & 13 & 3 & 19 & 42 & 5 \end{bmatrix} -1$	
0 0 0 1 0 0	0 0 -5 -73 3 =	= 0 -1 1 0 0	$\begin{vmatrix} 0 & 0 & 0 & 5 & 81 & 4 \end{vmatrix} $ b = $\begin{vmatrix} 1 \\ 1 \\ \end{vmatrix}$	
0 0 1 0 0 0	-13 -3 -14 39 -1	0 0 -1 1 0		
$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$	$57 ext{ 19 } 5 ext{ 7 } 10$	$\begin{bmatrix} 0 & 0 & 0 & -1 & 1 \end{bmatrix}$		

(3 pts) (a) In the system $A\mathbf{x} = \mathbf{O}$, which of the following variables are *free*? Select all that apply (no partial credit). $\bigcirc x_1 \bigcirc x_2 \bigcirc x_3 \bigcirc x_4 \bigcirc x_5 \bigcirc x_6$

(6 pts) (b) Determine if the system Ax = b is consistent. Clearly explain your reasoning to receive credit.

Problem 10. The data below depicts the inverse of a matrix A and a vector b.

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & -3 & -2 \\ 0 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 1 & 3 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

(3 pts) (a) The matrix A has $\operatorname{rank}(A) = \underline{\qquad}$, $\operatorname{nullity}(A) = \underline{\qquad}$, and $\operatorname{nullity}(A^{\intercal}) = \underline{\qquad}$.

(4 pts) (b) Find all solutions to the system Ax = b. Clearly explain your work to receive credit.

(4 pts) (c) Find the second column of A. Clearly explain your work to receive credit.