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Problem 1. Suppose that A is a matrix satisfying the matrix-vector product A ol = —11.
0
! -1

(2 pts) (a) The matrix A has rows and columns.
(3 pts) (b) Which of the following vectors is orthogonal to the vector v?

O Istrowof A (O 2ndrowof A (O 3rdrowof A (O 4throwof A (O 3rd column of A
(3 pts) (¢) Which of the following vectors forms an acute angle with v?

O Istrowof A (O 2ndrowof A (O 3rdrowof A (O 4throwof A () 3rd column of A

(4 pts) (d) Fill in the entries of this matrix product: A

—_ O = =
N O NN
(e RN e R e R an)
N O NN

(4 pts) (e) Calculate (ATw,v) wherew =[1 1 1 1 1]T. Clearly explain your reasoning to receive credit.

(6 pts) Problem 2. Let S = ATA 4 BCB where A is a 5 x 2024 matrix and B and C' are 2024 x 2024 symmetric matrices.
Show that S is symmetric.



(5 pts) Problem 3. Suppose that v, w;, and ws are vectors in R™ such that v is orthogonal to both w; and ws. Let
w = ¢1 - w1 + ¢2 - we. Show that v is orthogonal to w.

You must avoid circular reasoning to receive credit.

(5 pts) Problem 4. Suppose that A is n x n and that v € £4(\) and let X, = A - I, — A. Calculate X v. Clearly explain
your reasoning to receive credit.



(10 pts) Problem 5. Consider the matrix A given by

2 =2 2 4 4 6
0 0 0 0 -1 -1
A=|1 -1 1 2 3 4
0 -2 2 2 0 2
0 1 -1 -1 0 -1

Use the GauB-Jordan algorithm to calculate rref(A).

You must label each row reduction properly and adhere to the steps of the algorithm to receive credit.



(10 pts) Problem 6. Calculate PA = LU for A =

=N O W

N N Otw



Problem 7. Consider the matrices A, B, and Y given by

1
Lo s 10 1 1
A= B=|-2 1 0 -1 Y=|0
2 ! 3 -2 11 0 1
-2 -2 =2
0
(5 pts) (a) Calculate AB. The matrix AB is X and trace(AB) = .
(5 pts) (b) Calculate BA. The matrix BA is X and trace(BA) = .

(5 pts) (c) If possible, find a matrix X satisfying X A =Y. If this is not possible, then explain why.

OO~ ~ =

el =)



Problem 8. Consider the FA = R factorization and the vector b given by

E A R
1 -2 2 1 0 0 0 0 1 -4 1 1 -6 -2 0 -5 0 1
0 1 -2 -1 0f|—-1 6 2 0 5 1 0 0 01 -4 0 1
0 1 -1 0 0f|—-1 * 2 0 5 0f =10 0 0 0 0 1 b= |0
0 -1 1 1 -1 1 -6 -2 -1 -1 1 0 0 0 0 0 0 0
-1 1 -2 0 -1 1 6 -2 -1 -1 0 0 0 0 0 0 0 0

Note that the (3,2) entry of A is unknown and marked as *.
(2 pts) (@) Which columns of A are the pivot columns? Select all that apply (no partial credit).

O 1Ist column (O 2nd column () 3rd column () 4th column () 5th column () 6th column

(2 pts) (b) The unknown (3,2) entry of A is x = .

(4 pts) (¢) In class we demonstrated that representing the steps of the GauB-Jordan algorithm with elementary matrices
allows E to be expressed as the product of elementary matrices £ = Ey, - -- E3FEoFq. Find Ej.

(5 pts) (d) Determine if the system Ax = b is consistent. Clearly explain your reasoning to receive credit.



Problem 9. Consider the PA = LU factorization and the vector b given by

P A L U
00 0 0 1|](-3 —44 -16 14 35 -5 1 0 0 0 0|3 57 19 5 7 10
100 00 0 0 0 0 -8 -7 -1 1 0 0 0|0 13 3 19 42 5
00 010 0 0 0 -5 -—-73 3= 0 -1 1 0 0|0 0O O &5 81 4| b
001 00 0 -13 -3 -14 39 -1 0 0 -1 1 00 0 0 O 8 7
01 0 00 3 o7 19 ) 7 10 o o0 0 -1 10 0 O O 0 O

(3 pts) (@) In the system Az = O, which of the following variables are free? Select all that apply (no partial credit).
Oz1 Ox2 Oxz Oxs Owxs O w6

(6 pts) (b) Determine if the system Ax = b is consistent. Clearly explain your reasoning to receive credit.

-3
-1



Problem 10. The data below depicts the inverse of a matrix A and a vector b.

1 0 0 1 2 1
0 11 -3 -2 1
At=]0 -1 0 3 -1 b= |1
-1 0 0 0 -3 0
1 0 0 1 3 0
(3 pts) (@) The matrix A has rank(A) = , nullity (4) = , and nullity (AT) = .

(4 pts) (b) Find all solutions to the system Az = b. Clearly explain your work to receive credit.

(4 pts) (¢) Find the second column of A. Clearly explain your work to receive credit.



