DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam II

Name:

Unique ID:

Solutions

I have adhered to the Duke Community Standard in completing this exam. Signature:

August 1, 2024

- There are 100 points and 11 problems on this 100-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

	1	0	0	4	0		Г1	2	0	2	Ο	01
Problem 1. Let A be a matrix satisfying $\operatorname{rref}(A) =$	0	1	0	-3	0	and $\operatorname{rref}(A^{\intercal}) =$	1	-3	0	5	0	
		0	1	- -	0		0	0	1	2	0	0
	0	0	T	3	0		10	0	0	0	1	0
	0	0	0	0	1			0	0	0	<u> </u>	1
		Ο	0	0	0		0	0	0	0	0	1
		0	0	0	0		0	0	0	0	0	0
	0	0	0	0	0		L					1

(10 pts) (a) Fill in every missing label in the picture of the four fundamental subspaces of A below, including the dimension of each fundamental subspace.

(3 pts) (b) Which of the following is the most accurate geometric description of the left null space of A?

 $\sqrt{a \text{ plane in } \mathbb{R}^6}$ \bigcirc a plane in \mathbb{R}^5 \bigcirc a line in \mathbb{R}^6 \bigcirc a line in \mathbb{R}^5 \bigcirc a point with six coordinates

(3 pts) (c) The projection matrix onto the row space of A has trace $_4$.

(3 pts) (d) Every vector in Null(A) is guaranteed to be orthogonal to only one of the following vectors. Select this vector.

 $\sqrt{\begin{bmatrix} 1 & 0 & 0 & 4 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 5 & -3 & 3 & 3 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 4 & -2 & 3 & -4 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 4 & -3 & 4 & 2 & 0 \end{bmatrix}^{\mathsf{T}}}$

(5 pts) (e) Select all of the following vectors belonging to the row space of A (1.25pts each).

 $\sqrt{\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}} \bigcirc \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \sqrt{\begin{bmatrix} 1 & 1 & 1 & 4 & 0 \end{bmatrix}^{\mathsf{T}}}$

Solution. This is a question of whether or not each vector is orthogonal to Null(A), which is reasonable to determine by hand because dim Null(A) = 1. In the system $A\mathbf{x} = \mathbf{0}$, the free variable is $x_4 = c_1$ and the general solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -4 c_1 \\ 3 c_1 \\ -3 c_1 \\ c_1 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} -4 \\ 3 \\ -3 \\ 1 \\ 0 \end{bmatrix}$$

Our basis vector of Null(A) is $\begin{bmatrix} -4 & 3 & -3 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. The correct options are the ones orthogonal to this vector.

(5 pts) **Problem 2.** Suppose that $\boldsymbol{v} \in \mathcal{E}_A(5)$ where A is $n \times n$ and let $M = 2A^2 - A + I_n$. Show that $\boldsymbol{v} \in \mathcal{E}_M(\lambda)$ and correctly fill in the blank: $\lambda = \underbrace{46}_{M(\lambda)}$.

Solution. We are told that $\boldsymbol{v} \in \mathcal{E}_A(5)$, which means that $A\boldsymbol{v} = 5 \cdot \boldsymbol{v}$. We wish to find the value of λ that validates the equation $M\boldsymbol{v} = \lambda \cdot \boldsymbol{v}$. To do so, note that

$$M\boldsymbol{v} = (2A^2 - A + I_n)\boldsymbol{v}$$

= 2 AA $\boldsymbol{v} - A \boldsymbol{v} + \boldsymbol{v}$
= 2 A(5 $\cdot \boldsymbol{v}$) - 5 $\cdot \boldsymbol{v} + \boldsymbol{v}$
= (2 \cdot 5) $\cdot A \boldsymbol{v} - 5 \cdot \boldsymbol{v} + \boldsymbol{v}$
= 2 $\cdot 5 \cdot 5 \cdot \boldsymbol{v} - 5 \cdot \boldsymbol{v} + \boldsymbol{v}$
= 50 $\cdot \boldsymbol{v} - 5 \cdot \boldsymbol{v} + \boldsymbol{v}$
= 46 $\cdot \boldsymbol{v}$

This demonstrates that $\boldsymbol{v} \in \mathcal{E}_M(46)$.

(6 pts) **Problem 3.** The only eigenvalue of $A = \begin{bmatrix} 31 & -29 & -19 & -4 \\ 35 & -33 & -23 & -5 \\ -20 & 20 & 15 & 3 \\ 52 & -52 & -33 & -5 \end{bmatrix}$ is $\lambda = 2$ and $gm_A(2) = 1$. Use this information

to find a basis of $\mathcal{E}_A(2)$.

Solution. By definition, $\mathcal{E}_A(2) = \text{Null}(2 \cdot I_4 - A)$. We are told that $\text{gm}_A(2) = 1$, so we expect only one column relation in $2 \cdot I_4 - A$. Indeed, we find

$$\operatorname{rref} \begin{bmatrix} -29 & 29 & 19 & 4\\ -35 & 35 & 23 & 5\\ 20 & -20 & -13 & -3\\ -52 & 52 & 33 & 7 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We row-reduced $2 \cdot I_4 - A$ by noticing that the second column is the negation of the first. There are no other column relations because $gm_A(2) = 1$. The space $\mathcal{E}_A(2)$ has a single basis vector found by producing the general solution to $(2 \cdot I_4 - A)\mathbf{x} = \mathbf{O}$, which gives

$$\mathcal{E}_A(2) = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \right\}$$

(6 pts) **Problem 4.** If possible, construct a matrix A with $\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}^{\mathsf{T}}$ in the row space of A and $\begin{bmatrix} 3 & 2 & 2 \end{bmatrix}^{\mathsf{T}}$ in the null space of A.

Solution. This is asking for $\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Col}(A^{\mathsf{T}})$ and $\begin{bmatrix} 3 & 2 & 2 \end{bmatrix}^{\mathsf{T}} \in \operatorname{Null}(A)$. This is impossible because the inner product of these two vectors is

$$\langle \begin{bmatrix} 1 & -3 & 2 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 3 & 2 & 2 \end{bmatrix}^{\mathsf{T}} \rangle = 1 \neq 0$$

The vectors are not orthogonal. The existence of such a matrix A would violate the fact that $\operatorname{Col}(A^{\intercal}) \perp \operatorname{Null}(A)$.

 $(6 \text{ pts}) \text{ Problem 5. Consider} \begin{bmatrix} 2 & -1 & 2 & -1 & -3 \\ 1 & 0 & 2 & -3 & 1 \\ 1 & 0 & 3 & -4 & 0 \\ 1 & -1 & 0 & 2 & -3 \\ -1 & 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 2 & 1 & 1 & -5 \\ -6 & -3 & 3 & 7 & 5 & -27 \\ -5 & 0 & 10 & 4 & 5 & -22 \\ -4 & 0 & 8 & 3 & 4 & -17 \\ -1 & 1 & 5 & 0 & 1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -2 & 0 & 0 & -1 \\ 0 & 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} .$ Calculate the projection of $\boldsymbol{v} = \begin{bmatrix} -3 & 3 & 3 & -3 & 3 \end{bmatrix}^{\mathsf{T}}$ onto the left null space of A.

Solution. There is one row of zeros at the bottom of R, so the left null space of A is one-dimensional. We learned in class that the last row of E ($v_1 = \begin{bmatrix} -1 & 0 & 1 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$) is a basis vector of Null(A) in this case. Appealing to the one-dimensional projection formula then gives our desired projection as

$$\frac{1}{\|\boldsymbol{v}_1\|^2}\boldsymbol{v}_1\boldsymbol{v}_1^{\mathsf{T}}\boldsymbol{v} = \frac{1}{3}\begin{bmatrix} -1\\0\\1\\-1\\0 \end{bmatrix} \begin{bmatrix} -1&0&1&-1&0 \end{bmatrix} \begin{bmatrix} -3\\3\\3\\-3\\-3\\3 \end{bmatrix} = \begin{bmatrix} -3\\0\\3\\-3\\0 \end{bmatrix}$$

Problem 6. Let A be a matrix with independent columns satisfying Col(A) = Null(N) where $N = \begin{bmatrix} 1 & 0 & 1 & 2 & 2 \\ 0 & 1 & 0 & -3 & 4 \end{bmatrix}$.

(6 pts) (a) A is 5×3 with rank(A) = 3. Clearly explain your reasoning below.

Solution. The most straightforward way to do this is to start with the picture of the four fundamental subspaces of N, noting that N is in reduced row echelon form.

The picture for A must then be

The right side of the picture is inherited from the left side of the picture of N. Since A has independent columns, we then fill in the left side of the picture by accounting for the fact that A must be *full column rank*.

(4 pts) (b) Let $\boldsymbol{b} = \begin{bmatrix} 0 & 4 & 2 & 0 & -1 \end{bmatrix}^{\mathsf{T}}$. Is the system $A\boldsymbol{x} = \boldsymbol{b}$ consistent? Clearly explain why or why not. Solution. This is the same as asking if $\boldsymbol{b} \in \operatorname{Col}(A)$. Since $\operatorname{Col}(A) = \operatorname{Null}(N)$, we can quickly resolve the issue by calculating $N\boldsymbol{b}$.

$$\begin{bmatrix} 1 & 0 & 1 & 2 & 2 \\ 0 & 1 & 0 & -3 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \\ 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Here we find that $N\boldsymbol{b} = \boldsymbol{O}$, so $\boldsymbol{b} \in \text{Null}(N) = \text{Col}(A)$. This means that $A\boldsymbol{x} = \boldsymbol{b}$ is, in fact, consistent.

Problem 7. Consider the matrix A and the vector \boldsymbol{b} given by

$$A = \begin{bmatrix} 1 & 4 & -4 \\ 1 & 0 & -2 \\ 2 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -3 \\ 2 \\ -1 \end{bmatrix}$$

The solution \hat{x} to the least squares problem associated to Ax = b is $\hat{x} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$.

(4 pts) (a) Calculate the error E in using the least squares technique to approximate a solution to Ax = b. Solution. This is

$$E = \left\| \begin{bmatrix} \mathbf{b} \\ 1 \\ -3 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 & 4 & -4 \\ 1 & 0 & -2 \\ 2 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}} \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\|^2 = \left\| \begin{bmatrix} 1 \\ -3 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\|^2 = \left\| \begin{bmatrix} 1 \\ -1 \\ 2 \\ -2 \end{bmatrix} \right\|^2 = 10$$

(5 pts) (b) Find the projection of **b** onto $\text{Null}(A^{\intercal})$.

Solution. The projection of \boldsymbol{b} onto $\operatorname{Col}(A)$ is

$$\begin{bmatrix} 1 & 4 & -4 \\ 1 & 0 & -2 \\ 2 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} \widehat{x} \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}$$

The orthogonality of $\operatorname{Col}(A)$ and $\operatorname{Null}(A^{\intercal})$ then tells us that the projection of **b** onto $\operatorname{Null}(A^{\intercal})$ is

$$\begin{bmatrix} \mathbf{b} \\ 1 \\ -3 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -2 \end{bmatrix}$$

(6 pts) **Problem 8.** Suppose that Q_1 and Q_2 have orthonormal columns. Show that $Q = Q_1Q_2$ also has orthonormal columns.

Solution. We need only check $Q^{\intercal}Q = I$, which follows from

$$Q^{\mathsf{T}}Q = (Q_1Q_2)^{\mathsf{T}}(Q_1Q_2) = Q_2^{\mathsf{T}}Q_1^{\mathsf{T}}Q_1Q_2 = Q_2^{\mathsf{T}}IQ_2 = Q_2^{\mathsf{T}}Q_2 = I$$

(6 pts) **Problem 9.** Suppose that an $n \times n$ matrix P is symmetric and idempotent and let $v \in \mathbb{R}^n$. Show that the vectors Pv and (I - P)v are orthogonal.

Solution. We are told that P is symmetric and *idempotent*, which means that $P^{\intercal} = P$ and $P^2 = P$. We wish to demonstrate that Pv and (I - P)v are orthogonal. To do so, note that

$$\langle P\boldsymbol{v}, (I_n - P)\boldsymbol{v} \rangle = \langle \boldsymbol{v}, P^{\mathsf{T}}(I_n - P)\boldsymbol{v} \rangle$$

$$= \langle \boldsymbol{v}, P(I_n - P)\boldsymbol{v} \rangle$$

$$= \langle \boldsymbol{v}, (P - P^2)\boldsymbol{v} \rangle$$

$$= \langle \boldsymbol{v}, (P - P)\boldsymbol{v} \rangle$$

$$= \langle \boldsymbol{v}, \boldsymbol{O}_n \boldsymbol{v} \rangle$$

$$= 0$$

Problem 10. Let A be the incidence matrix of a directed graph G such that A = QR where

Do not ignore the factor $1/\sqrt{2}$ used to define Q and the factor $\sqrt{2}$ used to define R!

(6 pts) (a) $\chi(G) = \underline{-2}$, $h_0(G) = \underline{3}$, and $h_1(G) = \underline{5}$

Solution. The A = QR factorization tells us that A is 6×8 , which is why $\chi(G) = 6 - 8 = -2$. The number of columns of Q is the rank of A, which means that rank(A) = 3. It follows that $h_0(G) = \text{nullity}(A^{\intercal}) = 6 - 3 = 3$ and $h_1(G) = \text{nullity}(A) = 8 - 3 = 5$.

(6 pts) (b) Is it possible to set weights on the arrows of G so that the net flow through the nodes of G is given by the vector $\boldsymbol{b} = \begin{bmatrix} 2 & -2 & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$? Clearly explain why or why not.

Solution. This is the same thing as asking whether or not there is a weight vector \boldsymbol{w} satisfying $A\boldsymbol{w} = \boldsymbol{b}$, which is the same question of whether or not $\boldsymbol{b} \in \text{Col}(A)$.

Given our A = QR factorization, the quickest way to sort out this issue is to see if **b** is stable upon projection to $\operatorname{Col}(A)$. Recall that $P_{\operatorname{Col}(A)} = QQ^{\mathsf{T}}$, so or question is resolved with the calculation

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$

Here, we find $QQ^{\dagger}b \neq b$, so $b \notin Col(A)$. This means that is is *not possible* to set weights on the arrows of G so that the net flow is given by this vector **b**.

(10 pts)**Problem 11.** Calculate A = QR for $A = \begin{bmatrix} 0 & -1 & 2\\ 2 & 4 & -8\\ -1 & -1 & 2\\ -2 & 0 & 0\\ 0 & 0 & 3 \end{bmatrix}$.

Solution. We begin by applying the Gram-Schmidt procedure to the columns of A.

$$\boldsymbol{v}_1 = \begin{bmatrix} 0 & 2 & -1 & -2 & 0 \end{bmatrix}^{\mathsf{T}}$$
 $\boldsymbol{v}_2 = \begin{bmatrix} -1 & 4 & -1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$ $\boldsymbol{v}_3 = \begin{bmatrix} 2 & -8 & 2 & 0 & 3 \end{bmatrix}^{\mathsf{T}}$

Of course $\boldsymbol{w}_1 = \boldsymbol{v}_1 = \begin{bmatrix} 0 & 2 & -1 & -2 & 0 \end{bmatrix}^{\mathsf{T}}$ is the simplest. Next, \boldsymbol{w}_2 is

$$\boldsymbol{w}_1 = \boldsymbol{v}_2 - \operatorname{proj}_{\boldsymbol{w}_1}(\boldsymbol{v}_2) = \boldsymbol{v}_2 - \frac{\langle \boldsymbol{w}_1, \boldsymbol{v}_2 \rangle}{\langle \boldsymbol{w}_1, \boldsymbol{w}_1 \rangle} \boldsymbol{w}_1 = \begin{bmatrix} -1\\4\\-1\\0\\0\end{bmatrix} - \frac{9}{9} \begin{bmatrix} 0\\2\\-1\\-2\\0\end{bmatrix} = \begin{bmatrix} -1\\2\\0\\2\\0\end{bmatrix}$$

Then \boldsymbol{w}_3 is

$$\boldsymbol{w}_{3} = \boldsymbol{v}_{3} - \operatorname{proj}_{\boldsymbol{w}_{1}}(\boldsymbol{v}_{3}) - \operatorname{proj}_{\boldsymbol{w}_{2}}(\boldsymbol{v}_{3}) = \boldsymbol{v}_{3} - \frac{\langle \boldsymbol{w}_{1}, \boldsymbol{v}_{3} \rangle}{\langle \boldsymbol{w}_{1}, \boldsymbol{w}_{1} \rangle} \boldsymbol{w}_{1} - \frac{\langle \boldsymbol{w}_{2}, \boldsymbol{v}_{3} \rangle}{\langle \boldsymbol{w}_{2}, \boldsymbol{w}_{2} \rangle} \boldsymbol{w}_{2} = \begin{bmatrix} 2\\ -8\\ 2\\ 0\\ 3 \end{bmatrix} - \frac{-18}{9} \begin{bmatrix} 0\\ 2\\ -1\\ -2\\ 0 \end{bmatrix} - \frac{-18}{9} \begin{bmatrix} -1\\ 2\\ 0\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 2\\ 0 \end{bmatrix}$$

Normalizing $\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3$ gives $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ as

$$\boldsymbol{q}_{1} = \frac{1}{\sqrt{9}} \begin{bmatrix} 0\\ 2\\ -1\\ -2\\ 0 \end{bmatrix} \qquad \qquad \boldsymbol{q}_{2} = \frac{1}{\sqrt{9}} \begin{bmatrix} -1\\ 2\\ 0\\ 2\\ 0 \end{bmatrix} \qquad \qquad \boldsymbol{q}_{3} = \frac{1}{\sqrt{9}} \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 3 \end{bmatrix}$$

Our desired Q is then

$$Q = \frac{1}{3} \begin{bmatrix} 0 & -1 & 0 \\ 2 & 2 & 0 \\ -1 & 0 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Our desired ${\cal R}$ is

$$R = \frac{1}{3} \begin{bmatrix} 0 & 2 & -1 & -2 & 0 \\ -1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & -1 & 2 \\ 2 & 4 & -8 \\ -1 & -1 & 2 \\ -2 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 9 & 9 & -18 \\ 0 & 9 & -18 \\ 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -6 \\ 0 & 3 & -6 \\ 0 & 0 & 3 \end{bmatrix}$$