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Problem 1. Let A be a matrix satisfying rref(A4) = and rref(AT) =
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(10 pts) (a) Fill in every missing label in the picture of the four fundamental subspaces of A below, including the dimension
of each fundamental subspace.

(3 pts) (b) Which of the following is the most accurate geometric description of the left null space of A?

O aplanein RS (O aplanein R® (O alinein RS (O alinein R® (O a point with six coordinates

(3 pts) (¢) The projection matrix onto the row space of A has trace

(3 pts) (d) Every vector in Null(A) is guaranteed to be orthogonal to only one of the following vectors. Select this vector.

Ot oo40" Op -3330" OF4 -23 40" O -3 4270

(5 pts) (e) Select all of the following vectors belonging to the row space of A (1.25pts each).

O 1 100" OTo0oo0o0 1" O o000 Of 1140



(5 pts) Problem 2. Suppose that v € £4(5) where A is n x n and let M = 2A4% — A+ I,,. Show that v € &y ()\) and
correctly fill in the blank: \ = .

31 =29 -19 -4
_gg _g?) _%g _?, is A =2 and gm,4(2) = 1. Use this information

52 =52 -33 -5

(6 pts) Problem 3. The only eigenvalue of A =

to find a basis of £4(2).



(6 pts) Problem 4. If possible, construct a matrix A with [1 -3 Q]T in the row space of A and [3 2 Z]T in the null
space of A.

E A R
2 -1 2 -1 =3|]|-1 0 2 1 1 -5 1 0 -2 0 0 -1
1 02 -3 1||(-6 -3 3 7 5 =27 01 3 00 -1
(6 pts) Problem 5. Consider 1 03 -4 O0||-5 0 10 4 5 —-22{ =0 0 0 1 0 -3|. Calcu-
1 -1 0 2 -3||-4 0 8 3 4 -17 00 001 -3
-1 0 1 -1 o0f]|-1 1 501 -3 00 0O0O0 O
late the projection of v = [73 3 3 -3 3]T onto the left null space of A.



Problem 6. Let A be a matrix with independent columns satisfying Col(A) = Null(N) where N =

(6 pts) (a) Ais X with rank(A) = . Clearly explain your reasoning below.

(4 pts) (b) Let b= [0 4 2 0 —1} T. Is the system Az = b consistent? Clearly explain why or why not.



Problem 7. Consider the matrix A and the vector b given by

1 4 —4 1
1 0 -2 -3
A=19 1 1 b=1 4
2 1 0 -1

The solution Z to the least squares problem associated to Ax = b is T = [0 1 1] T

(4 pts) (a) Calculate the error E in using the least squares technique to approximate a solution to Az = b.

(5 pts) (b) Find the projection of b onto Null(AT).



(6 pts) Problem 8. Suppose that Q; and @2 have orthonormal columns. Show that @ = @Q1Q2 also has orthonormal
columns.

(6 pts) Problem 9. Suppose that an n x n matrix P is symmetric and idempotent and let v € R™. Show that the vectors
Pv and (I — P)v are orthogonal.



Problem 10. Let A be the incidence matrix of a directed graph G such that A = QR where

1 0 0
18_}8 1010 -1 0 -1 -1
QZEOOl R=+v2|0 1. 00 00 0 0
L0 o 0001 01 0 0

0 0 1

Do not ignore the factor 1/v2 used to define Q and the factor /2 used to define R!

(6pts) (a) x(G)=__  h(G)=__ Jand ly(G)=___

(6 pts) (b) Isit possible to set weights on the arrows of G so that the net flow through the nodes of G is given by the vector
b=1[2 -2 0 0 0 0]"? Clearly explain why or why not.



(10 pts)Problem 11. Calculate A = QR for A =

0
2
-1
-2
0

W O N 0N



