DUKE UNIVERSITY

Матн 218D-2

MATRICES AND VECTORS

Exam II

Name:

Unique ID:

I have adhered to the Duke Community Standard in completing this exam. Signature:

August 1, 2024

- There are 100 points and 11 problems on this 100-minute exam.
- Unless otherwise stated, your answers must be supported by clear and coherent work to receive credit.
- The back of each page of this exam is left blank and may be used for scratch work.
- Scratch work will not be graded unless it is clearly labeled and requested in the body of the original problem.

	1	0	0	4	0		Г1	2	Ο	2	0	01
Problem 1. Let A be a matrix satisfying $\operatorname{rref}(A) =$	0	1	0	-3	0	and $\operatorname{rref}(A^{\intercal}) =$		-3	1	3 2	0	
	0	0	1	3	0			0	0	0	1	
	0	0	0	0	1			0	0	0	0	1
	0	0	0	0	0			Ő	0	0	0	0
	0	0	0	0	0		L	Ŭ	Ŭ,	~	0	Ľ

(10 pts) (a) Fill in every missing label in the picture of the four fundamental subspaces of A below, including the dimension of each fundamental subspace.

(3 pts) (b) Which of the following is the most accurate geometric description of the left null space of A?

 \bigcirc a plane in \mathbb{R}^6 \bigcirc a plane in \mathbb{R}^5 \bigcirc a line in \mathbb{R}^6 \bigcirc a line in \mathbb{R}^5 \bigcirc a point with six coordinates

(3 pts) (c) The projection matrix onto the row space of A has trace _____.

(3 pts) (d) Every vector in Null(A) is guaranteed to be orthogonal to only one of the following vectors. Select this vector.

 $\bigcirc \begin{bmatrix} 1 & 0 & 0 & 4 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 5 & -3 & 3 & 3 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 4 & -2 & 3 & -4 & 0 \end{bmatrix}^{\mathsf{T}} \bigcirc \begin{bmatrix} 4 & -3 & 4 & 2 & 0 \end{bmatrix}^{\mathsf{T}}$

(5 pts) (e) Select all of the following vectors belonging to the row space of A (1.25pts each).

 $\bigcirc \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}} & \bigcirc \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} & \bigcirc \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}} & \bigcirc \begin{bmatrix} 1 & 1 & 1 & 4 & 0 \end{bmatrix}^{\mathsf{T}}$

(5 pts) **Problem 2.** Suppose that $v \in \mathcal{E}_A(5)$ where A is $n \times n$ and let $M = 2A^2 - A + I_n$. Show that $v \in \mathcal{E}_M(\lambda)$ and correctly fill in the blank: $\lambda =$.

(6 pts) **Problem 3.** The only eigenvalue of $A = \begin{bmatrix} 31 & -29 & -19 & -4 \\ 35 & -33 & -23 & -5 \\ -20 & 20 & 15 & 3 \\ 52 & -52 & -33 & -5 \end{bmatrix}$ is $\lambda = 2$ and $gm_A(2) = 1$. Use this information to find a basis of $\mathcal{E}_A(2)$.

(6 pts) **Problem 4.** If possible, construct a matrix A with $\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}^{\mathsf{T}}$ in the row space of A and $\begin{bmatrix} 3 & 2 & 2 \end{bmatrix}^{\mathsf{T}}$ in the null space of A.

Problem 6. Let A be a matrix with independent columns satisfying $\operatorname{Col}(A) = \operatorname{Null}(N)$ where $N = \begin{bmatrix} 1 & 0 & 1 & 2 & 2 \\ 0 & 1 & 0 & -3 & 4 \end{bmatrix}$.

(6 pts) (a) A is _____ × ____ with rank(A) =____. Clearly explain your reasoning below.

(4 pts) (b) Let $\boldsymbol{b} = \begin{bmatrix} 0 & 4 & 2 & 0 & -1 \end{bmatrix}^{\mathsf{T}}$. Is the system $A\boldsymbol{x} = \boldsymbol{b}$ consistent? Clearly explain why or why not.

Problem 7. Consider the matrix A and the vector \boldsymbol{b} given by

$$A = \begin{bmatrix} 1 & 4 & -4 \\ 1 & 0 & -2 \\ 2 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -3 \\ 2 \\ -1 \end{bmatrix}$$

The solution $\hat{\boldsymbol{x}}$ to the least squares problem associated to $A\boldsymbol{x} = \boldsymbol{b}$ is $\hat{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$. (4 pts) (a) Calculate the error E in using the least squares technique to approximate a solution to $A\boldsymbol{x} = \boldsymbol{b}$.

(5 pts) (b) Find the projection of **b** onto $\text{Null}(A^{\intercal})$.

(6 pts) **Problem 8.** Suppose that Q_1 and Q_2 have orthonormal columns. Show that $Q = Q_1Q_2$ also has orthonormal columns.

(6 pts) **Problem 9.** Suppose that an $n \times n$ matrix P is symmetric and idempotent and let $\boldsymbol{v} \in \mathbb{R}^n$. Show that the vectors $P\boldsymbol{v}$ and $(I - P)\boldsymbol{v}$ are orthogonal.

Problem 10. Let A be the incidence matrix of a directed graph G such that A = QR where

Do not ignore the factor $1/\sqrt{2}$ used to define Q and the factor $\sqrt{2}$ used to define R!

(6 pts) (a) $\chi(G) = _, h_0(G) = _, and h_1(G) = _$

(6 pts) (b) Is it possible to set weights on the arrows of G so that the net flow through the nodes of G is given by the vector $\boldsymbol{b} = \begin{bmatrix} 2 & -2 & 0 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$? Clearly explain why or why not.

(10 pts)**Problem 11.** Calculate A = QR for $A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & 4 & -8 \\ -1 & -1 & 2 \\ -2 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.